

Disclaimer

This presentation has been prepared by AVROBIO, Inc. ("AVROBIO") for informational purposes only and not for any other purpose. Certain information contained in this presentation and statements made orally during this presentation relate to or are based on studies, publications, surveys and other data obtained from third-party sources and AVROBIO's own internal estimates and research. While AVROBIO believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and AVROBIO makes no representation as to the adequacy, fairness, accuracy or completeness of any information obtained from third-party sources. While AVROBIO believes its internal research is reliable, such research has not been verified by any independent source.

This presentation may contain forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words and phrases such as "aims," "anticipates," "believes," "could," "designed to," "estimates," "expects," "forecasts," "goal," "intends," "may," "plans," "possible," "potential," "seeks," "will," and variations of these words and phrases or similar expressions that are intended to identify forward-looking statements. These forward-looking statements include, without limitation, statements regarding our business strategy for and the potential therapeutic benefits of our current and prospective product candidates; the design, commencement, enrollment and timing of ongoing or planned clinical trials and regulatory pathways; our plans and expectations with respect to the development of our clinical and preclinical product candidates, including timing, design and initiation of our potential clinical and registration trials and anticipated interactions with regulatory agencies; the timing of anticipated clinical and regulatory updates; the timing of patient recruitment and enrollment activities, clinical trial results, and product approvals; the timing and results of our ongoing preclinical studies; the anticipated benefits of our gene therapy platform including the potential impact on our commercialization activities. timing and likelihood of success; the anticipated benefits and safety profile of busulfan as a conditioning agent, the expected benefits and results of our manufacturing technology, including the implementation of our plato® platform in our clinical trials and gene therapy programs; the expected safety profile of our investigational gene therapies; the potential impact of the COVID-19 outbreak on our clinical trial programs and business generally; and the market opportunity for and anticipated commercial activities relating to our investigational gene therapies. Any such statements in this presentation that are not statements of historical fact may be deemed to be forward-looking statements.

Any forward-looking statements in this presentation are based on our current expectations, estimates and projections about our industry as well as management's current beliefs and expectations of future events only as of today and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that any one or more of our product candidates will not be successfully developed or commercialized; the risk that regulatory agencies may disagree with our anticipated development approach for our product candidates such as AVR-RD-01, including that we may not be able to utilize our planned registration trial of AVR-RD-01 for full approval but instead be required to conduct additional testing, that we may be required to conduct our planned testing in a more time-consuming, expensive, challenging or otherwise different manner than we envision or have conducted for our existing trials, particularly in light of the FDA's preference for clinical trials to be double-blinded and potentially include sham controls, and the risk that we may not be able to utilize our envisioned surrogate endpoint to support full approval of AVR-RD-01 but instead be required to measure a different endpoint such as a clinical outcome; the risk of cessation or delay of any ongoing or planned clinical trials of AVROBIO or our collaborators; the risk that we may not successfully recruit or enroll a sufficient number of patients for our clinical trials; the risk that we may not realize the intended benefits of our gene therapy platform, including the features of our plato® platform; the risk that our product candidates or procedures in connection with the administration thereof, including our use of busulfan as a conditioning agent, will not have the safety or efficacy profile that

we anticipate; the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical or clinical trials, will not be replicated or will not continue in ongoing or future studies or trials involving our product candidates; the risk that we will be unable to obtain and maintain regulatory approval for our product candidates; the risk that the size and growth potential of the market for our product candidates will not materialize as expected; risks associated with our dependence on third-party suppliers and manufacturers; risks regarding the accuracy of our estimates of expenses and future revenue; risks relating to our capital requirements and needs for additional financing; risks relating to clinical trial and business interruptions resulting from the COVID-19 outbreak or similar public health crises, including that such interruptions may materially delay our development timeline and/or increase our development costs or that data collection efforts may be impaired or otherwise impacted by such crises; and risks relating to our ability to obtain and maintain intellectual property protection for our product candidates. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause AVROBIO's actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in AVROBIO's most recent Annual or Quarterly Report, as well as discussions of potential risks, uncertainties and other important factors in AVROBIO's subsequent filings with the Securities and Exchange Commission. AVROBIO explicitly disclaims any obligation to update any forward-looking statements except to the extent required by law.

Note regarding trademarks: plato[®] is a registered trademark of AVROBIO. Other trademarks referenced in this presentation are the property of their respective owners.

Copyright[©] 2021 AVROBIO, Inc. All rights reserved.

Leadership in ex vivo lentiviral gene therapy

Leading pipeline for 6 lysosomal disorders

First-in-class gene therapies

Patients dosed across 3 indications

Multi-billion dollar market potential

>50,000 target patient population

~\$4.8 billion annual net sales SOC

100% of patients out >6 months show durability; Longest out 3.5 years

Industry-leading platform: plato®

Foundation for worldwide commercialization and pipeline expansion

Registration trials planned for 2022; Pivoting to commercial readiness

Leading lysosomal disorder gene therapy pipeline

Multiple milestones across pipeline expected over the next 12 months

	Indication	IND-Enabling	Phase 1/2	Planned Upcoming Milestones
WHOLLY-OWNED	Fabry AVR-RD-01			1Q22 – Clinical and regulatory update at WORLDSymposium™ Mid22 – Initiate registration trial
	Cystinosis AVR-RD-04			4Q21 – Clinical trial and regulatory update 2H22 – Initiate registration trial
	Gaucher type 1 AVR-RD-02			1H22 – Clinical trial update
	Gaucher type 3 AVR-RD-06			2H22 – Initiate registration trial
	Hunter AVR-RD-05			1H22 – Initiate Phase 1/2 clinical trial
	Pompe AVR-RD-03			1H22 – Initiate Phase 1/2 clinical trial

Multi-billion dollar market opportunity

Pipeline of first-in-class indications targeting > 50,000 patients

Disease	Approx. 2020 Global Net Sales [†]	Five-Year SOC Cost per U.S. Patient*	Selected Companies w/ Marketed Therapies
Fabry	\$1.4B	\$1.7M	SANOFI GENZYME Shire
Cystinosis	\$0.2B	\$4.3M	HORIZON [‡]
Gaucher	\$1.5B	\$2.3M	SANOFI GENZYME Shire
Hunter	\$0.6B	\$2.4M	Takeda Shire
Pompe	\$1.1B	\$3.2M	SANOFI GENZYME 🗳
	Total: ¢4 0D		

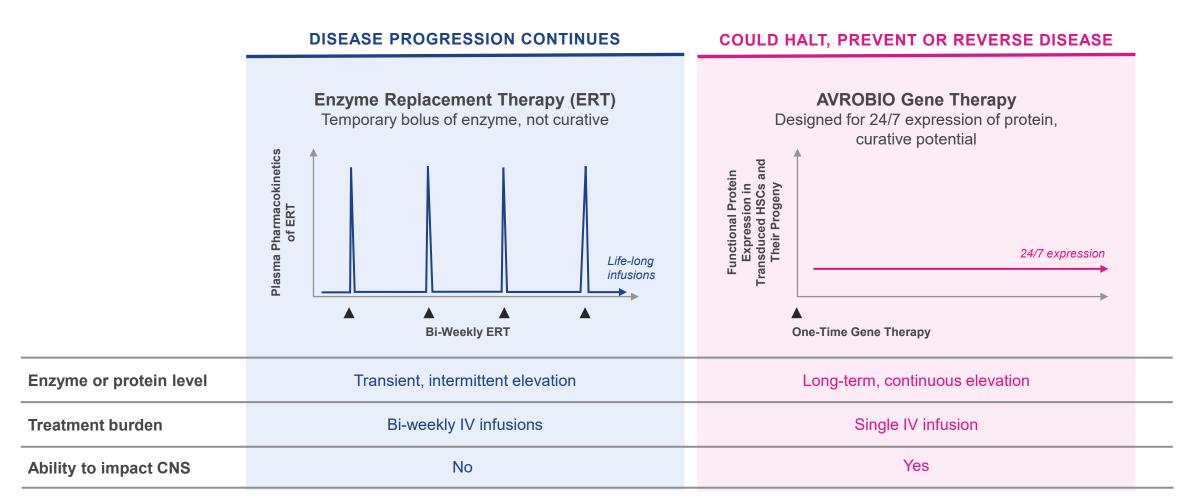
Total: \$4.8B

Sources: Rombach S et al., Orphanet J Rare Dis, 2013; van Dussen L et al., Orphanet J Rare Dis, 2014

Note: Shire acquired by Takeda in 2019

SOC: Standard of Care

^{*} WAC pricing from Redbook using standard dosing assumptions

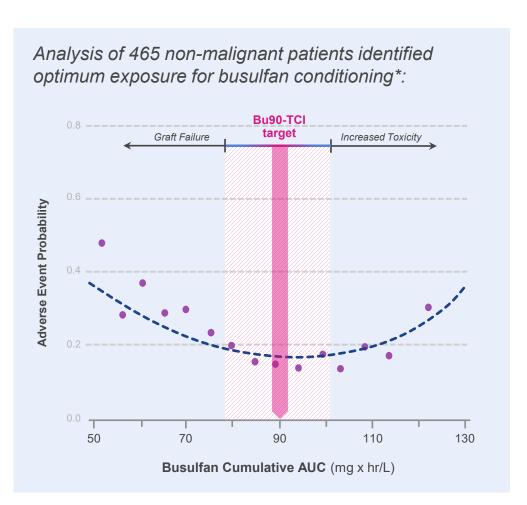

^{† 2020} Net Sales from company annual and other reports

[‡] Horizon's Procysbi oral therapy (delayed release cysteamine bitartrate); midpoint between avg. adult and pediatric

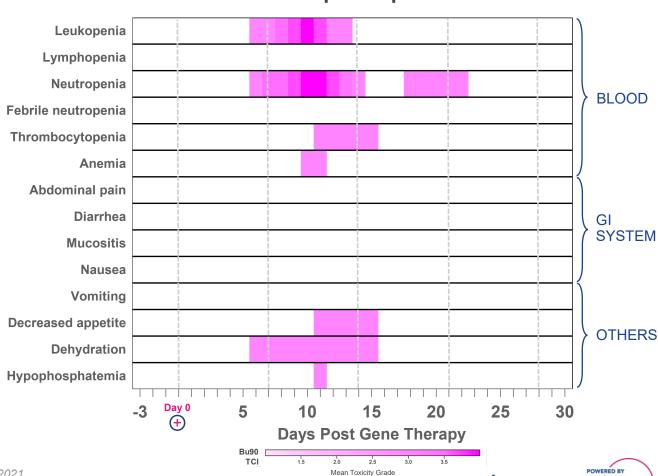
Significant advantages over standard of care

Lifelong treatments vs. potential single-dose therapy

Durability demonstrated across clinical programs


First patient out 3.5 years; 10 patients out 1 year or more

PROGRAM	PATIENT	MONTHS POST-INFUSION
	PATIENT 1	42
	PATIENT 2	36
Fabry Phase 1	PATIENT 3	24
	PATIENT 4	24
	PATIENT 5	18
	PATIENT 1	30
	PATIENT 2	18
Fabry Phase 2	PATIENT 3	18
	PATIENT 4	12
	PATIENT 5	0*
	PATIENT 6	0*
	PATIENT 7	0*
Gaucher Type 1 Phase 1/2	PATIENT 1	6
	PATIENT 1	12
Cystinosis Phase 1/2	PATIENT 2	6
	PATIENT 3	1


AVROBIO POWERED BY

Bu90-TCI conditioning-related side effects have been predictable and transient in first two plato® patients

Conditioning-related grade 3-4 AEs in first two plato® patients

Note: FAB-GT, f-k-a FAB-201, safety data cut-off December 7, 2020; Gaucher safety data cut-off January 4, 2021

Bu90-TCI: Busulfan 90-Target Concentration Intervention; AUC: Area Under the Curve; TCI: Target Concentration Intervention

^{*} Source: Bartelink IH et al., Lancet Haematol, 2016

Fabry disease opportunity

Caused by mutation in gene encoding for alpha-galactosidase A enzyme

Standard of care (SOC): ERT

- Not curative, relentless progression of disease continues
- Burdensome and expensive bi-weekly ERT infusions required; 5-year treatment cost of ERT = ~\$1.7 million*

Unmet needs with SOC:

Kidney function

Proteinuria, polyuria, kidney failure

Cardiac function

Left ventricular hypertrophy, fibrosis, heart failure

Neuropathic pain

Pain and burning sensations in hands and feet, pain crises

Everyday burden of illness, and life expectancy

Not curative, relentless progression of disease, shortened lifespan

CNS complications

TIA/stroke, depression, executive function deficit, white matter lesions

Fabry Disease Target Product Profile:**

- Prevents, halts or reverses disease; extends/normalizes lifespan
- Addresses all patient segments all genetic mutations, male and female, all ages
- Lifelong durability single infusion; off ERT
- Impacts hard-to-reach organs e.g., brain, heart, kidney
- Well tolerated

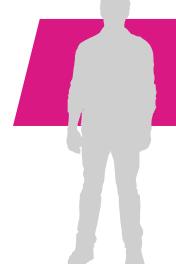
Affects ~ 1:40,000 males and 1:118,000 females in U.S.

^{*} WAC pricing from Redbook using standard dosing assumptions

^{**} Note: these are target attributes for a first-line therapy

Two AVR-RD-01 Fabry clinical trials

12 patients dosed across Phase 1 and 2



PHASE 1

Investigator-Sponsored Trial*

FULLY ENROLLED

PHASE 2

AVROBIO FAB-GT Trial **

ACTIVELY RECRUITING

OBJECTIVES

Safety and tolerability

Preliminary efficacy

PATIENTS

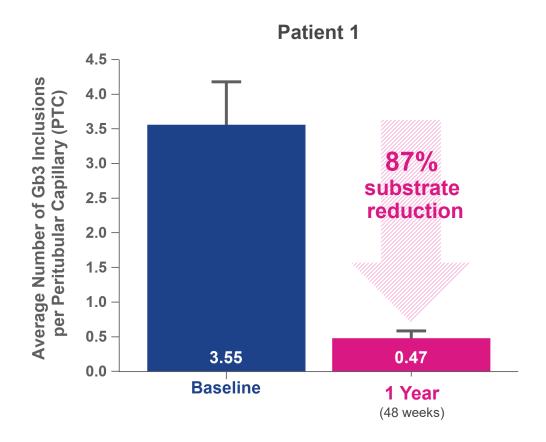
- n = 5 patients
- 18 59 year-old males
- On ERT >6 months prior to enrollment

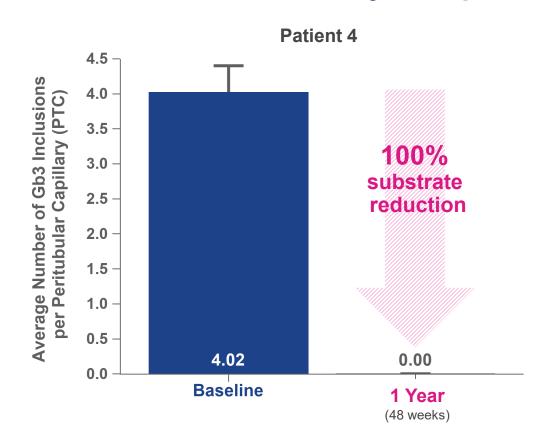
OBJECTIVES

- Safety and tolerability
- Efficacy

PATIENTS

- n = 8-12 patients*** (7 dosed to-date)
- 16 50 year-old males***
- Treatment naïve

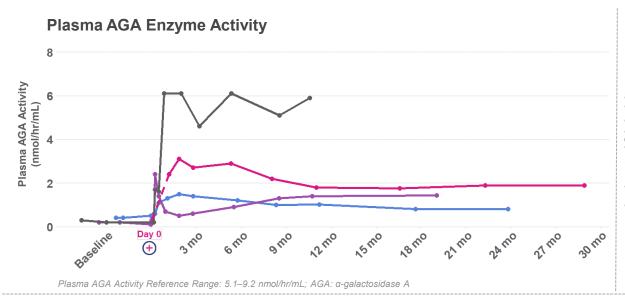


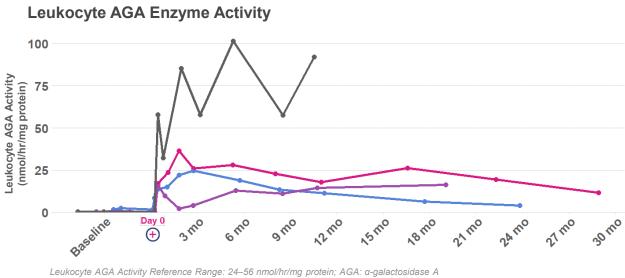

^{*} Sponsored by FACTs team (Fabry Disease Clinical Research and Therapeutics) in Canada

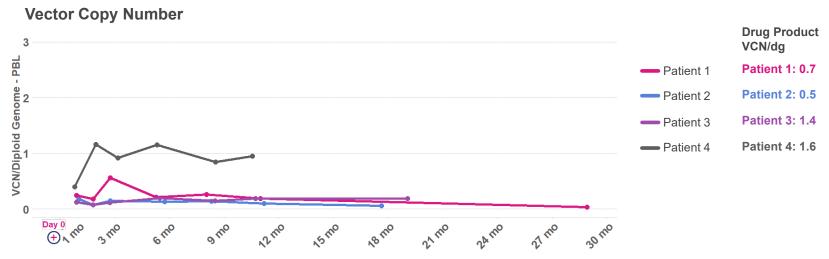
^{**} FAB-GT fka FAB-201

^{***} Plan to increase to up to 14 patients with protocol amendment, including females

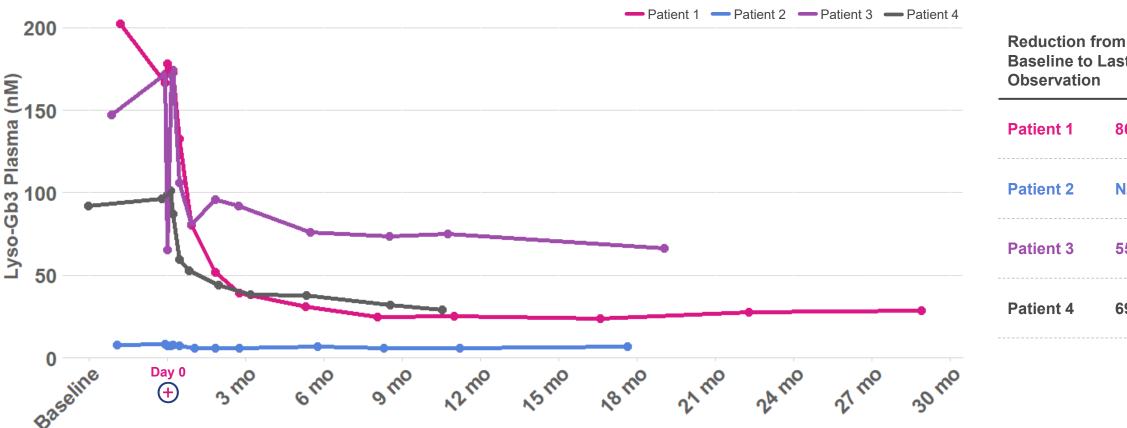
Clinically meaningful and statistically significant reduction in substrate in first two evaluable kidney biopsies


Two-sample t-test for difference between average PTCs at Baseline vs. 48 weeks; p < 0.0001; Error bar represents the standard error at Baseline (n=48 PTCs) and 48 weeks (n=101 PTCs). Scored by 2 independent, blinded pathologists


Two-sample t-test for difference between average PTCs at Baseline vs. 48 weeks; p < 0.0001; Error bar represents the standard error at Baseline (n=103 PTCs) and 48 weeks (n=99 PTCs). Scored by 2 independent, blinded pathologists

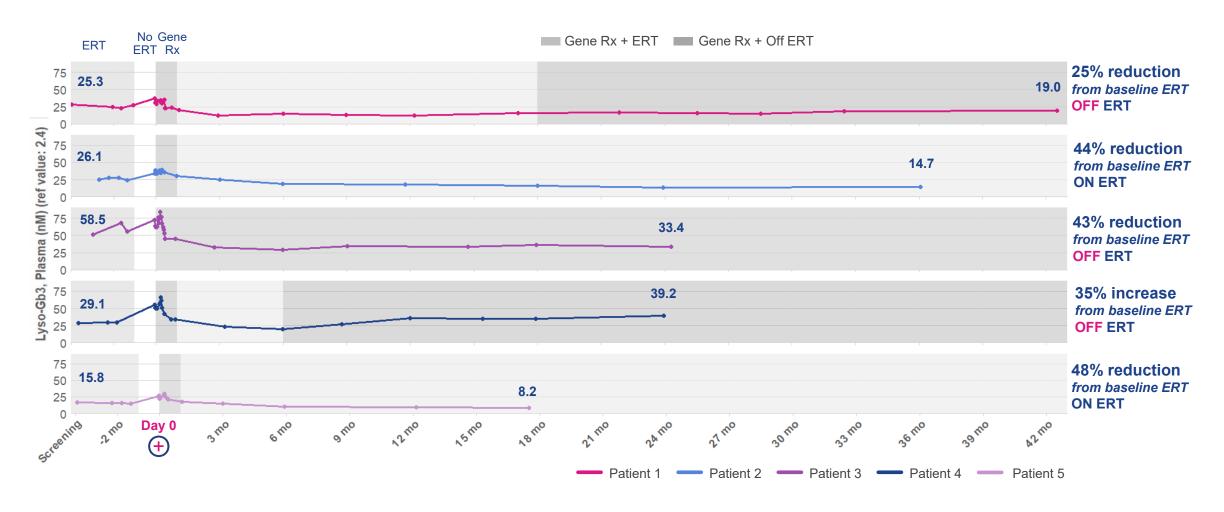


Durability demonstrated over multiple measures up to 2.5 years (+) Patient 4 dosed using plato®



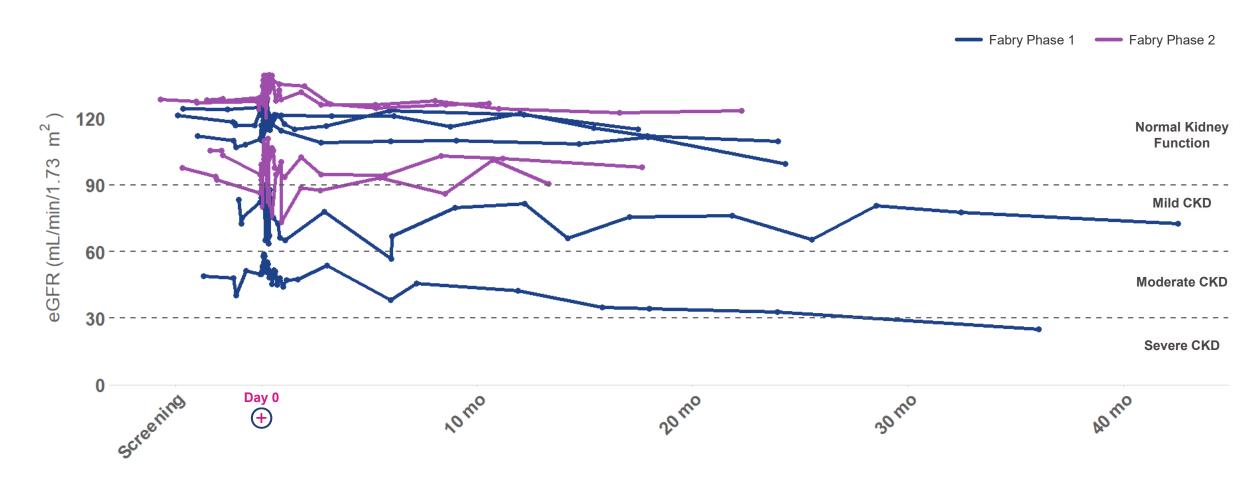
70% average plasma lyso-Gb3 reduction

Baseline to Last Observation		
Patient 1	86%	
Patient 2	N/A	
Patient 3	55%	



69%

25% average plasma lyso-Gb3 reduction below baseline ERT

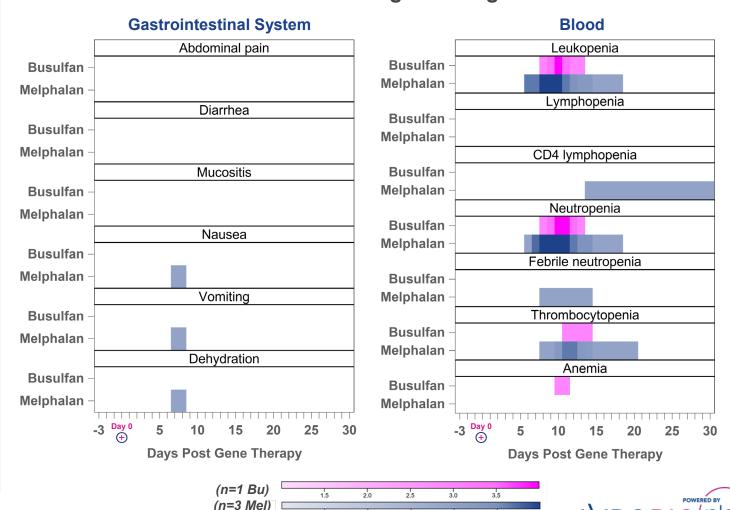

All patients who have discontinued ERT remain off ERT*

Kidney function (eGFR) stable up to 3.5 years*

^{*} Eight of nine patients stable; other patient entered trial with more advanced kidney disease and a baseline eGFR level <50 mL/min/1.73m2; as expected, this patient has not stabilized, and the patient remains on ERT

Note: eGFR was calculated using the CKD-EPI formula
eGFR: Estimated Glomerular Filtration Rate; CKD: Chronic Kidney Disease; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration

No unexpected safety events identified


+

Conditioning-related side effects have been manageable and transient

Phase 1 & 2 AEs and SAEs

- No AEs or SAEs related to AVR-RD-01 drug product
- AEs across trials generally consistent with myeloablative conditioning, underlying disease or pre-existing conditions
- Phase 1 AEs (n=94)
 - Grade 3 or 4 (n=14)
- Phase 1 SAEs (n=2) resolved without clinical sequelae
 - Post-AVR-RD-01 treatment: febrile neutropenia; thrombophlebitis
- Phase 2 AEs (n=111)
 - Grade 3 or 4 (n=22)
- Phase 2 SAEs (n=6) resolved without clinical sequelae
 - Post-AVR-RD-01 treatment: dehydration; nausea; vomiting; febrile neutropenia

Phase 2 conditioning-related grade 3/4 AEs

0 2.5 3 Mean Toxicity Grade

Note: Phase 2 safety data cut-off December 7, 2020; Phase 1 safety data cut-off November 26, 2020 AE: Adverse Event; Bu: Busulfan; Mel: Melphalan

Cystinosis opportunity

Caused by CTNS gene defect, resulting in cystine buildup in lysosomes

Standard of care (SOC): Cysteamine pills & eye drops

- Not curative, relentless progression of disease continues; significantly shortened lifespan; kidney transplant often required
- Burdensome and expensive high pill burden and hourly eye drops; 5-year treatment cost with SOC ~\$4.3 million*

Unmet needs with SOC:

Kidney function

Renal Fanconi syndrome, proteinuria, CKD, kidney failure

Vision

Corneal cystine accumulation, photophobia, involuntary eyelid closure

Endocrine disorders

Softening & deformation of bones, hypothyroidism, diabetes, infertility

CNS complications

Myopathy, hypotonia, tremors, swallowing, neurodevelopmental issues

Everyday burden of illness, reduced life expectancy

High pill burden causes GI discomfort; sulfur body odor and breath

Cystinosis Target Product Profile:**

- Prevents, halts or reverses disease; extends/normalizes lifespan
- Addresses all patient segments male & female; kidney transplant independent; all ages
- Lifelong durability single infusion; off cysteamine pills and eye drops
- Impacts hard-to-reach organs e.g., eye, endocrine organs, brain
- Well tolerated

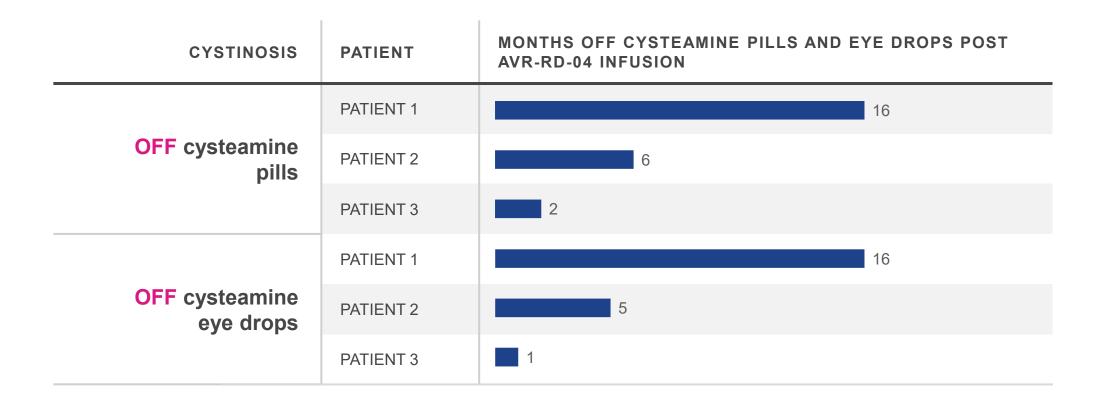
Affects ~ 1:170,000 people

^{*} WAC pricing from Redbook using standard dosing assumptions

^{**} Note: these are target attributes for a first-line therapy

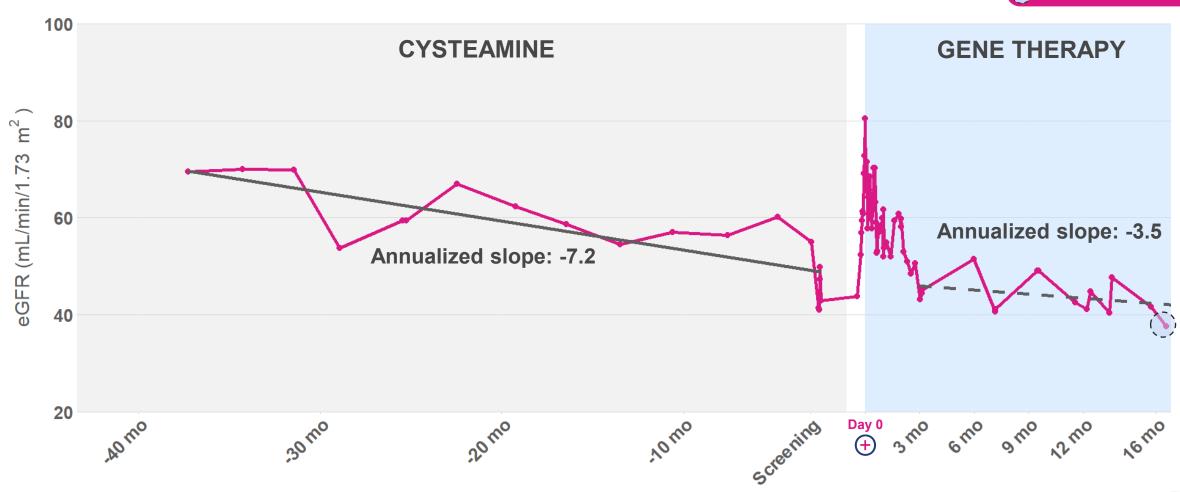
Steady enrollment in AVR-RD-04 IST trial in cystinosis

ACTIVELY RECRUITING:



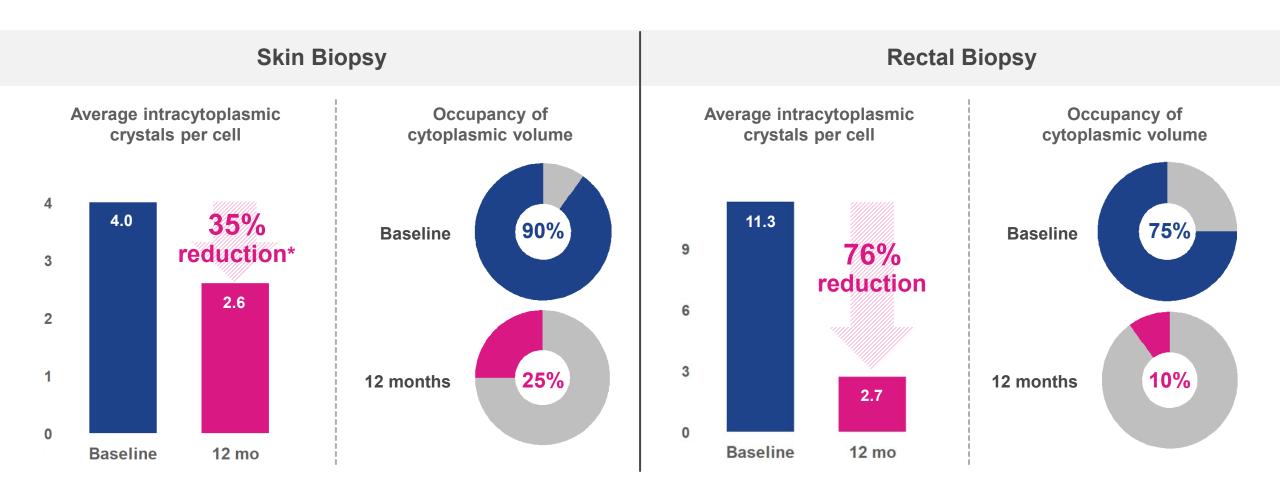
OBJECTIVES	PATIENTS
 Safety and tolerability Hypothesis generation of endpoints 	 Up to 6 patients (3 patients enrolled to-date) Adults and adolescents Cohorts 1-2 >18 years; Cohort 3 >14 years Male and female Oral and ophthalmic cysteamine

All patients continue to be cysteamine-independent



+

eGFR data at 16 months suggest slowing of renal function deterioration post-gene therapy

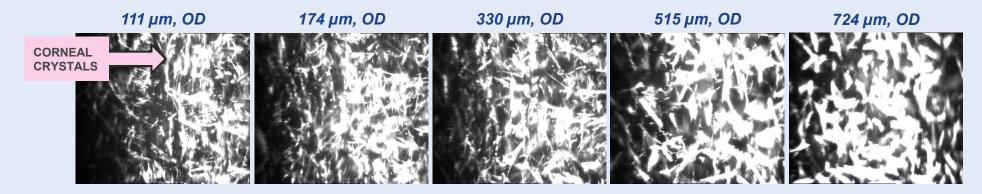


Note: These results are for a single patient only and may vary in the study population; eGFR calculated using CKD-EPI formula; eGFR: Estimated Glomerular Filtration Rate; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration

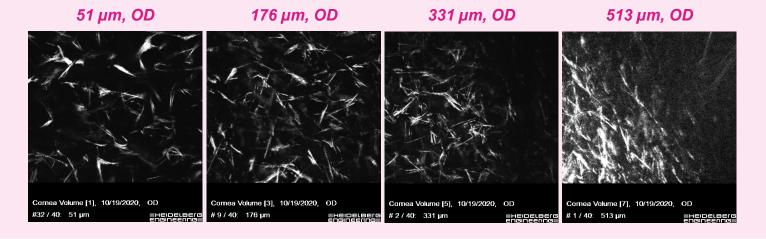
Sharp drop in the number and size of cystine crystals in skin and rectal biopsies

Note: These results are for a single patient only and may vary in the study population

^{*} Calculation of reduction in average intracytoplasmic crystals per cell in skin biopsy revised based on baseline value of 4.0 (vs. 4.6 as shown in previous presentations)


Substantial decline in corneal crystals observed at 1 year

Front of cornea Back of cornea

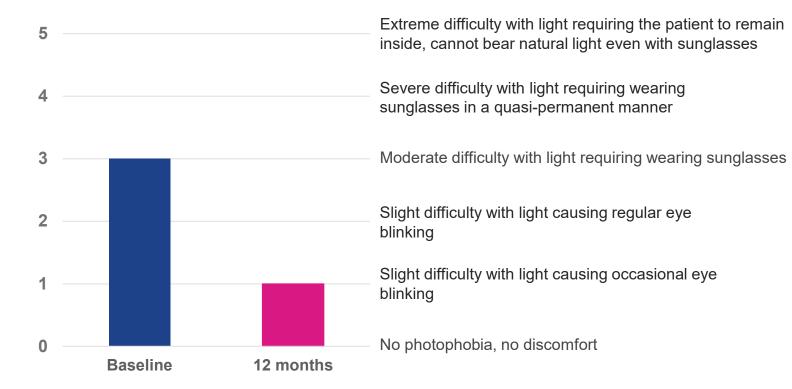

Baseline

IVCM images from Nidek Confoscan

12 months post-gene therapy

IVCM images from Heidelberg HRT3 w/ Rostock Corneal Module

Photophobia improved meaningfully at 1 year

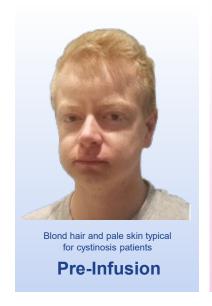


Photophobia, or extreme sensitivity to light, is a hallmark of cystinosis

Cystinosis photophobia intensity associated with:

- Crystal density (light scattering)
- Inflammatory cell infiltration
- Corneal nerve damage

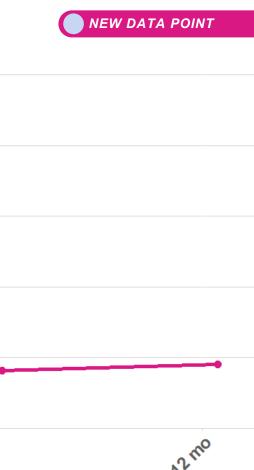
Self-Assessed Photophobia Grade (Patient 1)

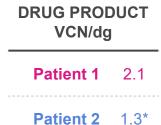


Darker pigmentation may be a sign of multi-functional cystinosin activity post-gene therapy

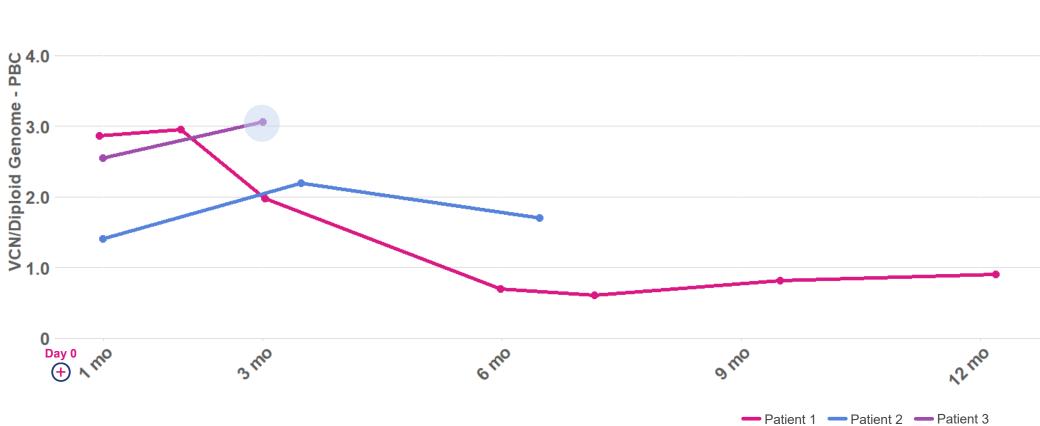
Cystinosin is located in melanosomes and regulates melanin synthesis

Patient 1 appears to exhibit progressively darkening skin, eyebrows and hair color post-infusion, suggesting a possible impact of cystinosin protein on melanin




VCN trending as expected across patients

Patient 1 reached VCN therapeutic plateau


5.0

AVROBIO (plate)

^{*} From second apheresis VCN: Vector Copy Number; PBCs: Peripheral Blood Cells; dg: Diploid Genome

No unexpected safety events

Conditioning-related side effects have been manageable and transient

No SAEs or AEs related to AVR-RD-04 drug product

AEs & SAEs reported

- AEs (n=53)
 - Majority of AEs are mild or moderate and resolved
- SAE (n=1)
 - Post AVR-RD-04 treatment: appendicitis unrelated to study treatment or procedures

 AEs are generally consistent with myeloablative conditioning or underlying disease:

Pre-AVR-RD-04 treatment and prior to conditioning (not all events listed)

- Diarrhea, hypokalemia, dizziness
- Dehydration, vomiting

Post-AVR-RD-04 treatment (not all events listed)

- Alopecia, intermittent diarrhea, vomiting, loss of appetite
- Mucositis, intermittent febrile neutropenia, intermittent epistaxis
- Intermittent blurry vision, intermittent hypokalemia, mucoceles
- Thrombocytopenia

Gaucher disease type 1 opportunity

Caused by mutation in the gene encoding for glucocerebrosidase (GCase) enzyme

Standard of care (SOC): ERT

- Not curative, relentless progression of disease continues, including bone crisis and fatigue
- Burdensome and expensive bi-weekly infusions required; 5-year treatment cost with ERT = ~\$2.3 million*

Unmet needs with SOC:

Bone-related manifestations

Skeletal abnormalities, avascular necrosis, osteoporosis

Hemoglobin levels and platelet counts

Anemia, thrombocytopenia, easy bruising, bleeding

Hepatosplenomegaly

Enlarged liver, enlarged spleen

Everyday burden of illness, and life expectancy

Fatigue, pain, lung disease, biweekly infusions, shortened lifespan

CNS complications

Increased risk of GBA-Parkinson's disease

Gaucher Disease Type 1 Target Product Profile**:

- Prevents, halts or reverses disease; extends/normalizes lifespan
- Addresses all patient segments all GD1 genetic mutations, all ages, male & female
- Lifelong durability single infusion; off ERT/chaperone therapy
- Impacts hard-to-reach organs e.g., brain, bone and bone marrow
- Well tolerated

Affects ~ 1:44,000 people worldwide

^{*} WAC pricing from Redbook using standard dosing assumptions

^{**} Note: these are target attributes for a first-line therapy

Guard1: Phase 1/2 study in Gaucher disease type 1

PHASE 1/2

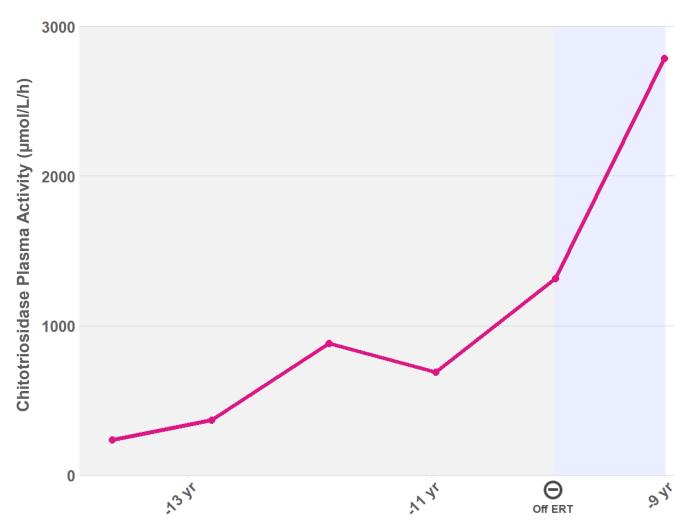
AVR-RD-02

An adaptive, open-label, multinational phase 1/2 study of the safety and efficacy of ex vivo, lentiviral vector-mediated gene therapy AVR-RD-02 for patients with Gaucher disease type 1

ACTIVELY RECRUITING:

RECRUITING PLANNED 2021:

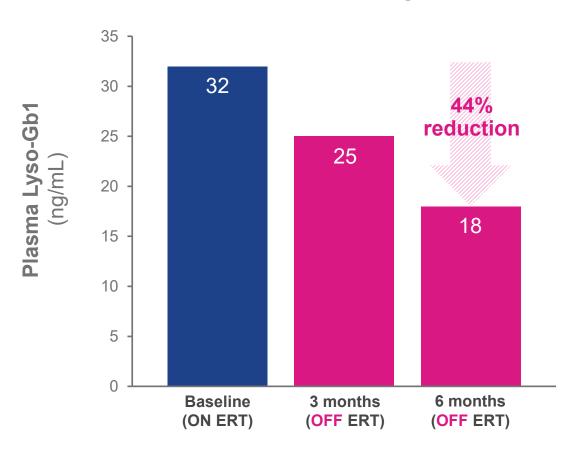
OBJECTIVES	PATIENTS	
SafetyEfficacyEngraftment	 Enrollment goal 8-16 patients 18-45-year-old males and females Have a confirmed diagnosis of GD1 based on: Deficient glucocerebrosidase enzyme activity Clinical features consistent with GD1 	 Gaucher disease type 1 patients who are: ERT-stable for >24 months or Treatment-naïve or Have not received ERT or SRT in the last 12 months

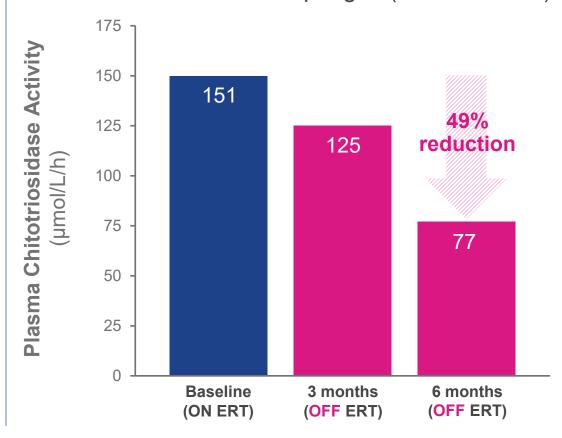


First patient's plasma chitotriosidase levels spike off ERT

Personal history documents response to intermittent and halted ERT use

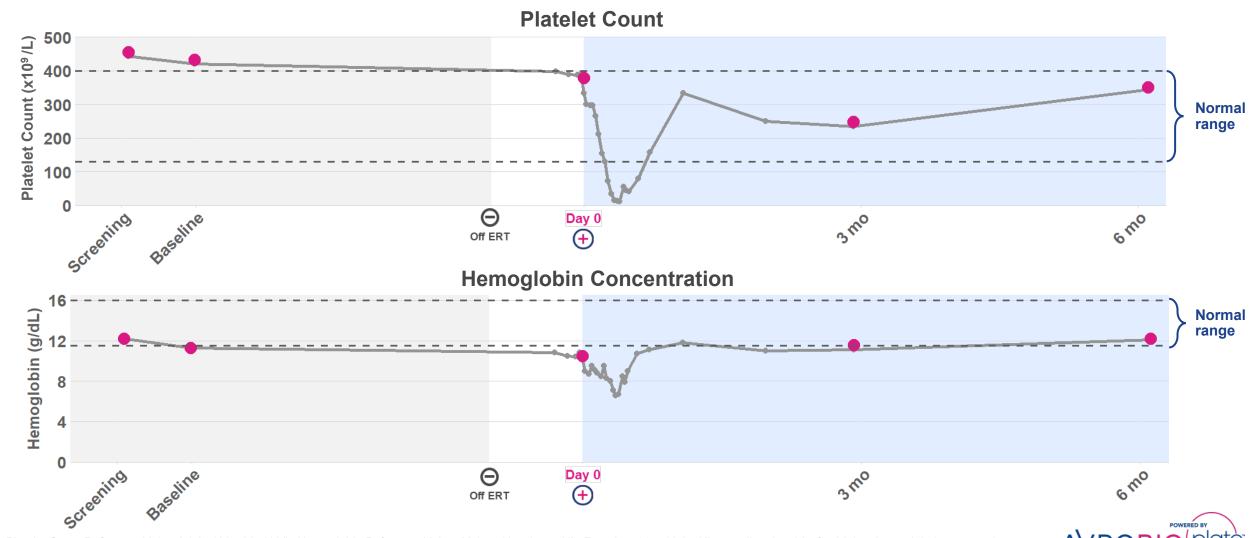
Chitotriosidase is a marker of inappropriately activated macrophages (Gaucher cells)


Years Prior to Gene Therapy Infusion


Key biomarkers below ERT baseline at 6 months

Lyso-Gb1 is a sensitive and specific marker of toxic metabolite accumulation in Gaucher disease

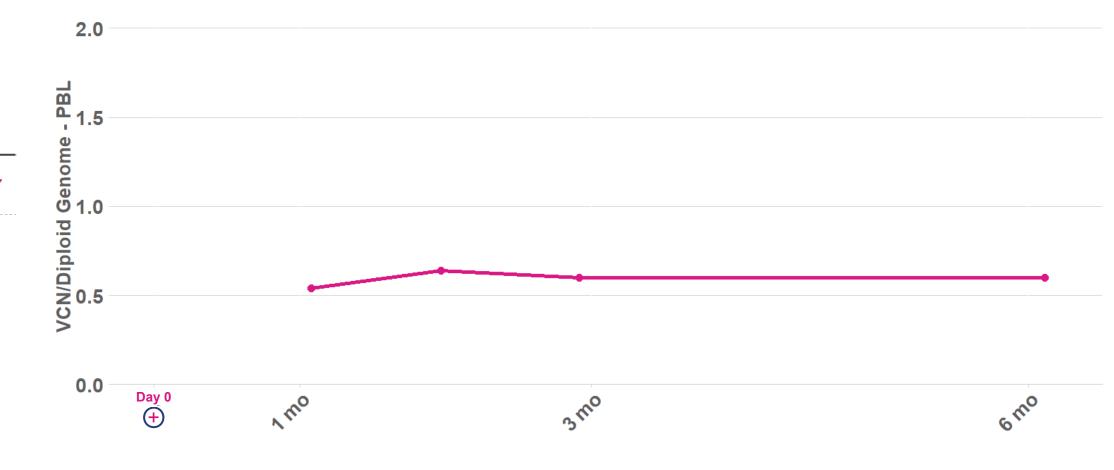
Chitotriosidase is a marker of inappropriately activated macrophages (Gaucher cells)



Baseline taken one month prior to gene therapy which is when ERT is discontinued Lyso-Gb1 Plasma Normal Range: 0.5 – 1.2 ng/mL Plasma chitotriosidase activity normal range: 0.0 – 44.2 μmoL/L/h ERT: Enzyme Replacement Therapy

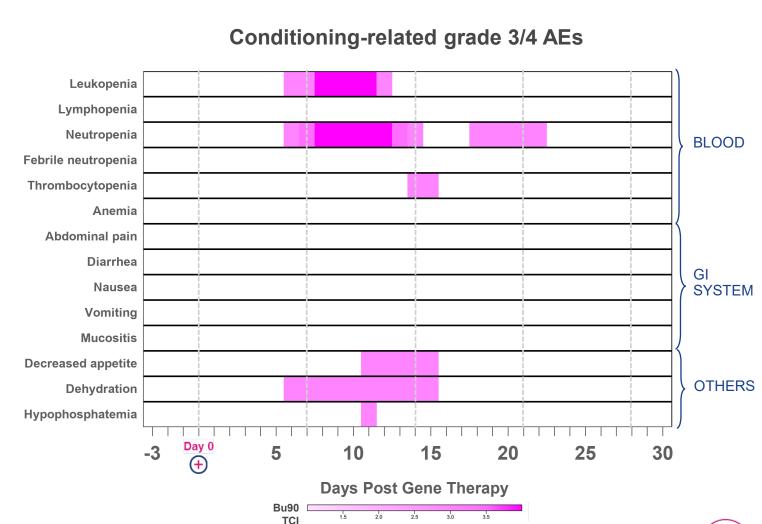
(+)

Platelet counts and hemoglobin in normal range at 6 months, despite being off ERT


Platelet Count Reference Value Adult: 130-400x109/L; Hemoglobin Reference Value: Males: 13.5-17.5 g/dL; Females: 11.5-16.0 g/dL; grey line: local (safety) lab values; pink dots: central (efficacy) lab values; ERT: Enzyme Replacement Therapy

VCN trending as expected at 6 months

Patient 1 3.7


No unexpected safety events identified in first patient

Conditioning-related side effects have been predictable and transient

AEs (no SAEs reported)

- No AEs or SAEs related to AVR-RD-02 drug product
- AEs generally consistent with myeloablative conditioning, underlying disease or pre-existing conditions
- AEs n=29
 - Grade 3 (n=7)
 - Eye pain, decreased appetite, dehydration, headache, hypophosphatemia, neutropenia, thrombocytopenia
 - Grade 4 (n=2)
 - Leukopenia and neutropenia
- AEs resolved without clinical sequelae

Mean Toxicity Grade

Note: Safety database cut as of January 04, 2021

AE: Adverse Event; SAE: Serious Adverse Event; G-CSF: Granulocyte Colony Stimulating Factor G-CSF 5 μg/kg @ Days 5, 6, 7, 10, 11, and 14 post-infusion of AVR-RD-02

Bu90-TCI: Busulfan 90-Target Concentration Intervention; GI: Gastrointestinal

Gaucher disease type 3 opportunity

Maddie, living with Gaucher disease Type 3

Subacute neurological form of Gaucher disease characterized by progressive encephalopathy and associated with the systemic manifestations of Gaucher type 1

Standard of care (SOC): ERT

- Not curative, relentless progression of disease continues; utility of ERT minimized by its inability to impact the CNS
- Burdensome and expensive bi-weekly infusions required; 5-year treatment cost with ERT = ~\$2.3 million*

Unmet needs with SOC:

CNS complications

Seizures, cognitive problems, poor coordination

Bone-related manifestations

Bone crises, bone pain, avascular necrosis

Hemoglobin levels and platelet counts

Anemia, thrombocytopenia, easy bruising, bleeding

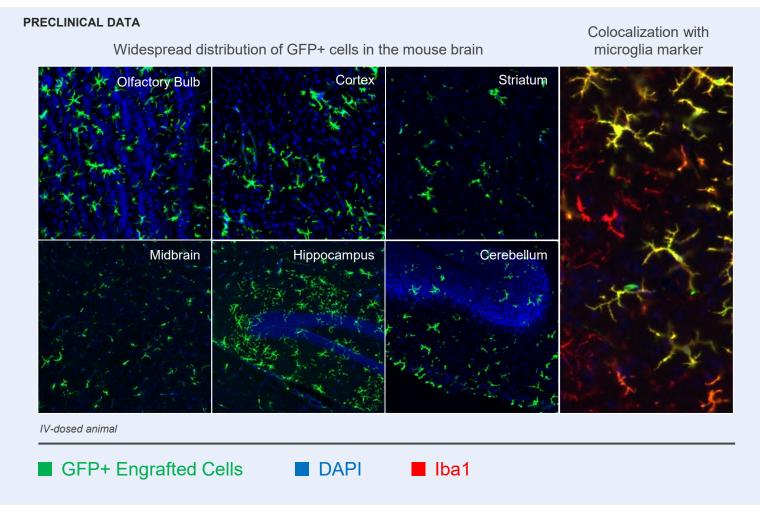
Hepatosplenomegaly

Enlarged liver, enlarged spleen

Everyday burden of illness, and life expectancy

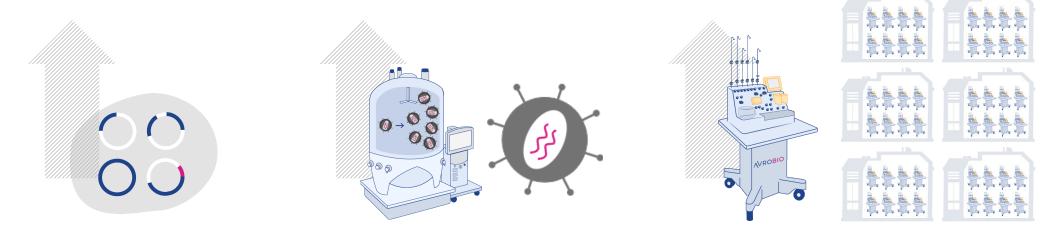
Fatigue, pain, shortened lifespan

Gaucher Disease Type 3 Target Product Profile:


- Prevents, halts or reverses disease; normalizes lifespan
- Addresses all patient segments all genetic mutations, all ages, male & female
- Lifelong durability single infusion; off ERT/SRT
- Impacts hard-to-reach organs e.g., brain, bone and bone marrow
- Well tolerated no ERT-related side effects

Lentiviral gene therapy enables global distribution of functional enzyme to brain and bone in preclinical studies

plato®


AVROBIO's platform for global gene therapy commercialization

- Redefines manufacturing best practices
- + Solves key industry challenges

Designed to be fully scalable

Common components and automation leveraged across manufacturing

PLASMID

3 of 4 component plasmids used in every vector

Each plasmid can be mass produced and stored for use

VECTOR

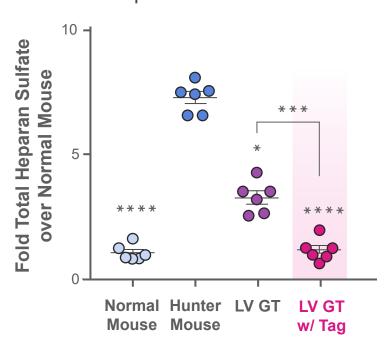
State of the art, largest scale, 200L vector production

Expansion through simple installation of additional units, mass produced, frozen, and stored for use

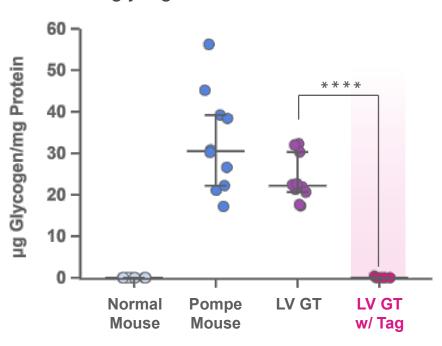
DRUG PRODUCT

Closed system automated platform

Scale out of manufacturing suites and automation units to meet patient demand



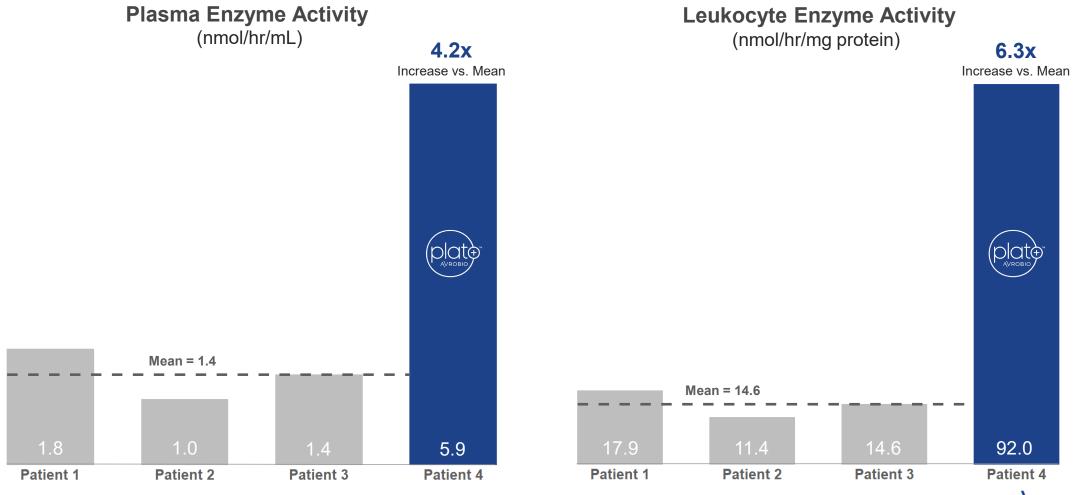
Proprietary tags deliver therapeutic protein into hard-to-reach organs


Hunter syndrome

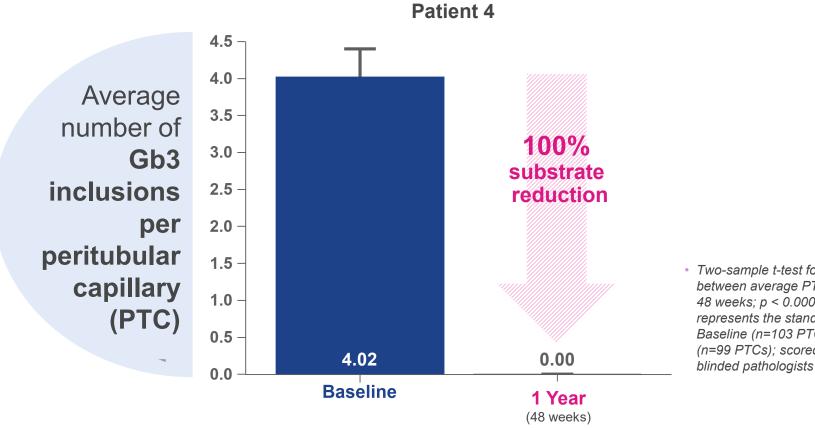
Tag normalizes heparan sulfate in brain

Pompe disease

Tag normalizes glycogen substrate in brain

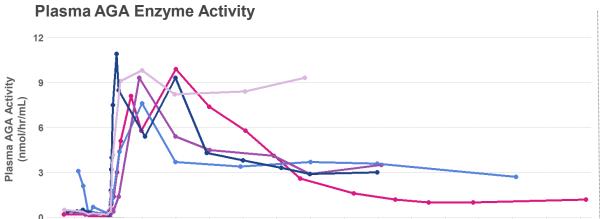


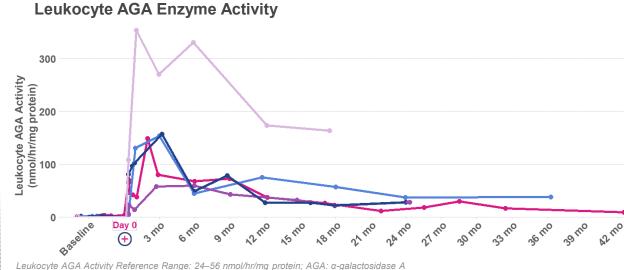
Appendix


Patient #4 is first Fabry patient dosed with plato®

FAB-GT 12 month data for patient #4 with plato® vs. patients #1-3

100% clearance of substrate in kidney biopsy at 1 year Patient dosed using plato[®]




 Two-sample t-test for difference between average PTCs at Baseline vs. 48 weeks; p < 0.0001; Error bar represents the standard error at Baseline (n=103 PTCs) and 48 weeks (n=99 PTCs); scored by 2 independent,

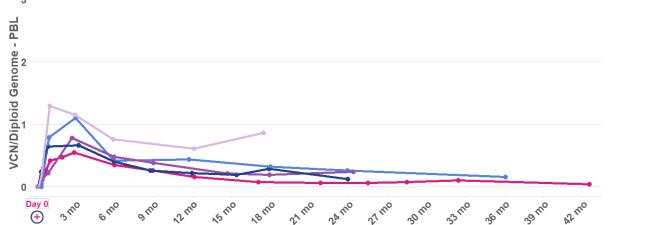
Durability demonstrated over multiple measures up to 3.5 years

Patient 1

Patient 2

Patient 3

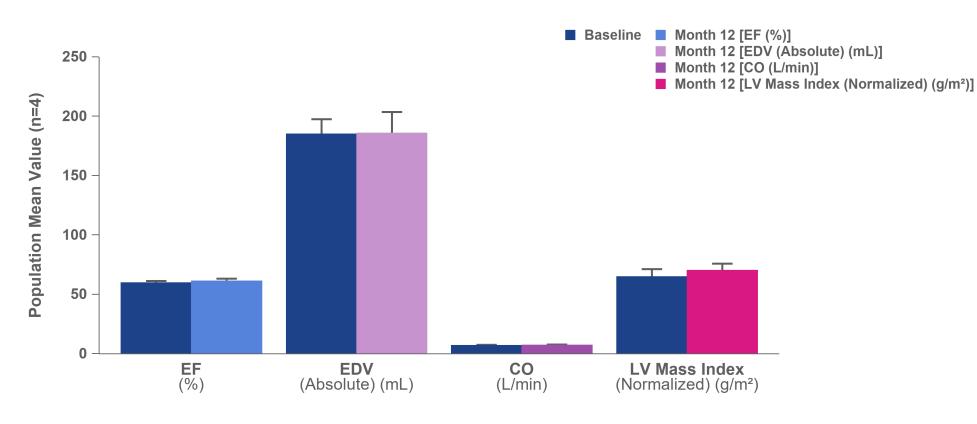
Patient 4


— Patient 5

Plasma AGA Activity Reference Range: 5.1–9.2 nmol/hr/mL; AGA: α-galactosidase A

Vector Copy Number

Patient 5: 1.2



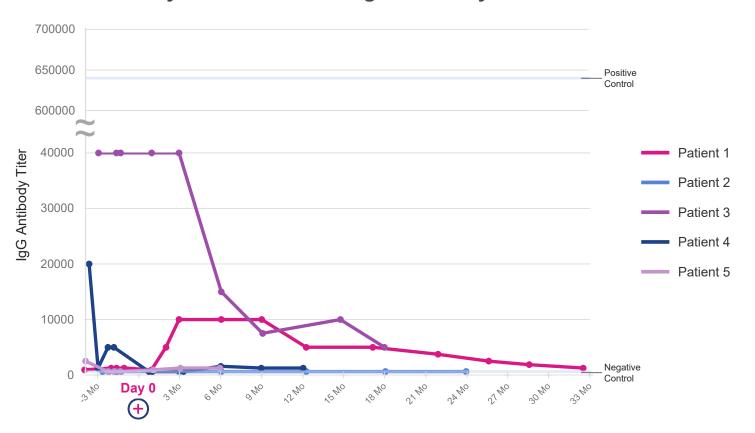
AVROBIO (plate)

VCN: Vector Copy Number; PBL: Peripheral Blood Leukocytes; dg: Diploid Genome

Cardiac function and mass stable across multiple measures up to 1 year

Abbreviations: EF=Ejection Fraction; EDV=End Diastolic Volume; LV=Left Ventricular. Error bar represents the standard error of the population mean (n=4).

^{*}Reference Range Mean Values Male 20-39 yrs; EF: 64.3 ± 4.2%; EDV: 178.6 ± 30.1 mL; CO: 4-8 L/min; LV Mass Index: 67.8 ± 10.7 g/m²


^{**}Reference Range Mean Values Male 40-49 yrs; EF: 58-75 %; EDV: 117-200 mL; CO: 4-8 L/min; LV Mass Index: 58-91 g/m²

Reduction of pre-existing anti-ERT drug IgG antibodies

Suggests potential as a therapeutic option independent of pre-existing antibodies

Fabry Disease Phase 1 IgG Antibody Titer

Similar results observed in other studies

San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)

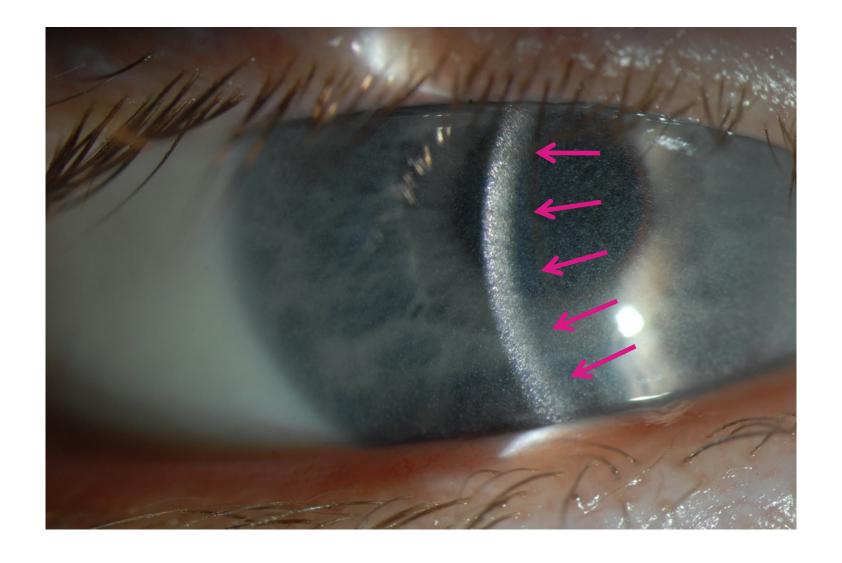
Change in pre-existing antibodies reported for Hurler disease (MPS-1)

- Ex vivo LV gene therapy with conditioning
- n=6
- Evaluable patients (5/6) demonstrated sustained, supraphysiologic blood IDUA activity
- 4/5 prior ERT (rhIDUA) exposure (5-28 months)
- 4/5 pre-existing ERT-induced IgG antibodies
- 6/6 anti-rhIDUA IgGs undetectable 2 months post-gene therapy

Updated FDA table of surrogate endpoints (as of 3/31/21)

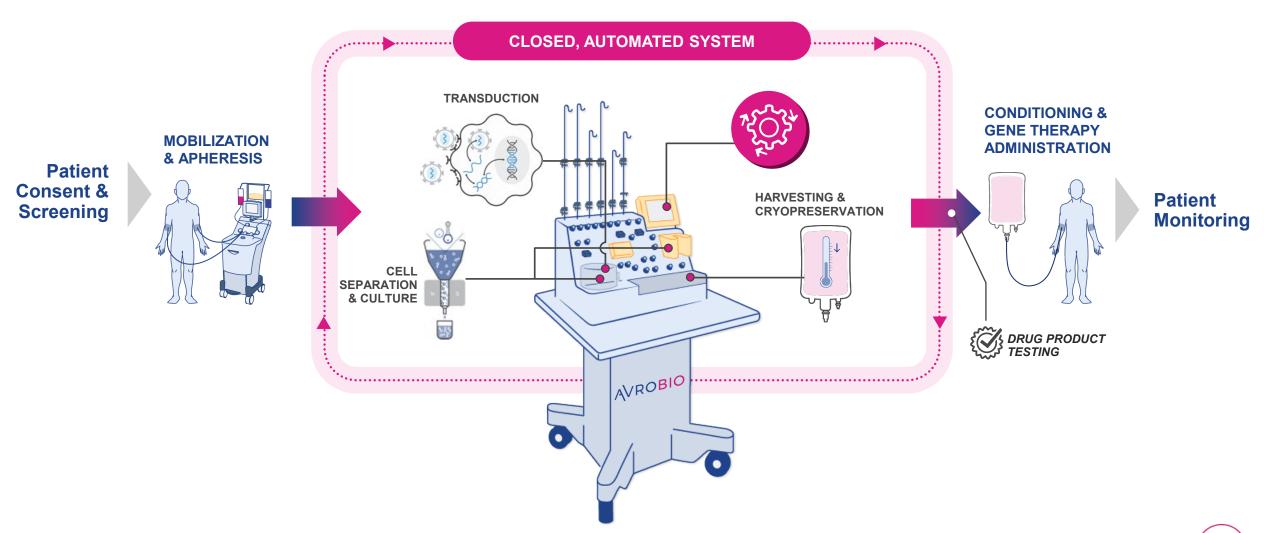
Table of Surrogate Endpoints That Were the Basis of Drug Approval or Licensure | FDA

Disease or Use	Patient Population	Surrogate endpoint	Type of approval appropriate for	Drug mechanism of action
Diphtheria vaccine (in combination vaccines)	Persons to be immunized against diphtheria	Anti-diphtheria toxoid antibody	Traditional	Induction of immunity
Duchenne muscular dystrophy (DMD)	Patients with DMD who have a confirmed mutation of the DMD gene that is amenable to exon 51 skipping	Skeletal muscle dystrophin	Accelerated	Antisense oligonucleotide
Exocrine pancreatic insufficiency	Patients with exocrine pancreatic insufficiency due to cystic fibrosis, chronic pancreatitis, pancreatectomy, or other conditions	Fecal coefficient of fat absorption	Traditional	Combination of porcine-derived lipases, proteases, and amylases
Fabry disease	Patients with confirmed Fabry disease	Complete/near complete clearance of GL-3 inclusions in biopsied renal peritubular capillaries (using the Fabrazyme Scoring System)	Traditional	Enzyme replacement therapy
Fabry disease	Patients with confirmed Fabry disease and amenable GLA gene variants	Reduction of GL-3 inclusions in biopsied renal peritubular capillaries (using the BLISS methodology)	Accelerated	Pharmacological chaperone
Female hypogonadotropic hypogonadism	Infertile women with hypogonadotropic hypogonadism	Follicle size, serum estradiol and progesterone#	Traditional	Gonadotropin
First aid antiseptic; Health care antiseptic; Consumer antiseptic	General public, consumers, and health care professionals	Bacterial count	Traditional and Monograph	Antimicrobial
Gout	Patients with gout	Serum uric acid	Traditional	Xanthine oxidase inhibitor; URAT1 inhibitor; Uricase
Hepatitis A (Hep A) vaccine	Persons to be immunized against Hep A	Anti-Hep A antigen antibody	Traditional	Induction of immunity
Hepatitis B (Hep B) vaccine	Persons to be immunized against Hep B	Anti-Hep B antigen antibody	Traditional	Induction of immunity
Hepatitis B Virus (HBV)	Patients with HBV infection with or without cirrhosis	Undetectable plasma HBV-DNA for indefinite treatment or HBsAg loss for finite treatment	Traditional	Antiviral
Hepatitis C Virus (HCV)	Patients with HCV infection with or without cirrhosis	Sustained viral response (HCV-RNA)	Traditional	Antiviral
Hepatitis D Virus (HDV)	Patients with HDV infection with or without cirrhosis	≥ 2 log reduction in HDV-RNA plus normalization of ALT or HDV below the LLOQ [×]	Accelerated	Antiviral
Hepatorenal syndrome	Patients with hepatorenal syndrome type 1	Serum creatinine ^x	Traditional	Mechanism agnostic*
Homozygous sitosterolemia (phytosterolemia)	Patients with homozygous sitosterolemia (phytosterolemia)	Plasma sitosterol and campesterol	Traditional	Dietary cholesterol absorption inhibitor


FDA: Food and Drug Administration

Note: FDA guidance provides that the acceptability of a surrogate endpoint in a particular clinical development program should not be assumed to be appropriate for use in a different program.

Crystal buildup in eye clearly visible before gene therapy Patient 1 at baseline



Unrivaled commercial-scale platform in plato®

Poised to manufacture at scale

Global infrastructure already in place

VECTOR 2,400 PATIENTS ANNUALLY >50 patients per run 12 runs per year per suite (200L scale bioreactor runs (10⁹ titer)) **4** production suites

DRUG PRODUCT

2,400 PATIENTS ANNUALLY

100 patients per unit per year

8 automated units per suite

3+ global production suites

CMC achievements have defined the plato® story

Strategic investment in technology laid the foundation for our manufacturing leadership

Manufacturing

Robust production platform

- Best-in-class LV manufacturing
- Scalable from plasmid to drug product

Global footprint

In the clinic in multiple jurisdictions

Cost effective

Intended to address key COGs issues

Analytics

Robust platform analytics

- Best-in-class VCN assay
- First-in-class transduction assay

Deep product characterization

First-in-class single cell analytics

Potency assay matrix

Intended to accelerate regulatory approvals

