UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 8-K

CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): April 3, 2020

AVROBIO, INC.

(Exact name of registrant as specified in its charter)

Delaware (State or other jurisdiction of incorporation) 001-38537 (Commission File Number)

81-0710585 (I.R.S. Employer Identification No.)

One Kendall Square Building 300, Suite 201 Cambridge, MA 02139 (Add cipal ex ng zip code)

(617) 914-8420 (Registrant's tele including area code)

Not Applicable (Former Name or Former Address, if Changed Since Last Report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))

Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Securities registered pursuant to Section 12(b) of the Act:

Title of each class	Trading symbol(s)	Name of each exchange on which registered		
Common Stock, \$0.0001 par value per share	AVRO	Nasdaq Global Select Market		

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§ 230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§ 240.12b-2 of this chapter).

Emerging growth company \boxtimes

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act.

Item 7.01 Regulation FD Disclosure.

On April 3, 2020, AVROBIO, Inc. updated its corporate presentation for use in meetings with investors, analysts and others. A copy of the slide presentation is furnished as Exhibit 99.1 to this Current Report on Form 8-K.

The information in this Form 8-K shall not be deemed "filed" for purposes of the Securities Exchange Act of 1934, as amended (the "Exchange Act"), or otherwise subject to the liabilities of that section, nor shall it be deemed incorporated by reference in any filing under the Securities Act of 1933, as amended, or the Exchange Act, except as expressly set forth by specific reference in such a filing.

Item 9.01. Financial Statements and Exhibits.

(d) Exhibits

99.1 <u>AVROBIO, Inc. slide presentation, dated April 3, 2020.</u>

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Date: April 3, 2020

AVROBIO, INC.

By: /s/ Geoff MacKay Geoff MacKay President and Chief Executive Officer

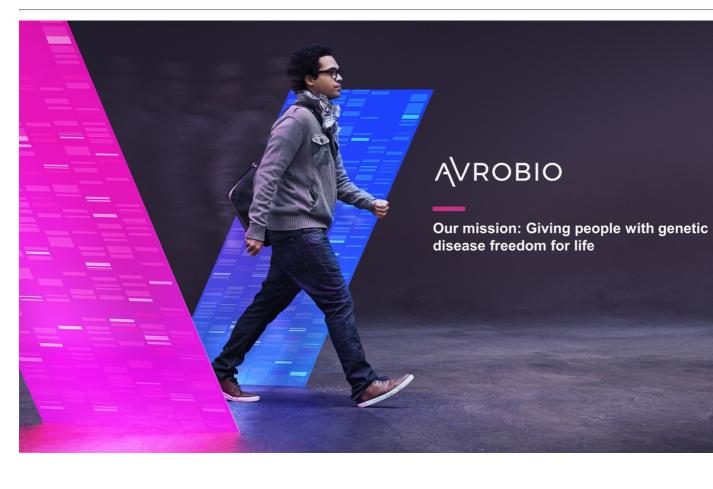
AVROBIO

Company Presentation April 3, 2020

Disclaimer

This presentation has been prepared by AVROBIO, Inc. ("AVROBIO") for informational purposes only and not for any other purpose. Certain information contained in this presentation and statements made orally during this presentation relate to or are based on studies, publications, surveys and other data obtained from third-party sources and AVROBIO's own internal estimates and research. While AVROBIO believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and AVROBIO makes no representation as to the adequacy, fairness, accuracy or completeness of any information obtained from third-party sources. While AVROBIO believes its internal research is reliable, such research has not been verified by any independent source.

This presentation may contain forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words and phrases such as "aims," "anticipates," "believes," "could," "designed to," "estimates," "expects," "forecasts," "goal," "intends," "may," "plans," "possible," "potential," "seeks," will," and variations of these words and phrases or similar expressions that are intended to identify forward-looking statements. These forward-looking statements include, without limitation, statements regarding our business strategy, prospective products and goals, the therapeutic potential of our investigational gene therapies, the design, commencement, enrollment and timing of ongoing or planned clinical trials, clinical trial results, product approvals and regulatory pathways, potential impact of the COVID-19 outbreak on our clinical trial programs and business generally, as well as our plans and expectations with respect to the timing and resumption of any development activities that may be temporarily paused as a result of the COVID-19 outbreak, anticipated benefits of our gene therapy platform including potential impact on our commercialization activities, the expected benefits and results of our implementation of the plato[™] platform in our clinical trials and gene therapy programs, the expected safety profile of our investigational gene therapies, timing and likelihood of success, plans and objectives of management for future operations, future results of anticipated products, the market opportunity for and anticipated commercial activities relating to our investigational gene therapies, and statements regarding the Company's financial and cash position and expected cash reserves. Any such statements in this presentation that are not statements of historical fact may be deemed to be forward-looking statements.


Any forward-looking statements in this presentation are based on AVROBIO's current expectations, estimates and projections about our industry as well as management's current beliefs and expectations of future events only as of today and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forwardlooking statements. These risks and uncertainties include, but are not limited to, the risk that any one or more of AVROBIO's investigational gene therapies will not be successfully developed or commercialized, the risk of cessation or delay of any ongoing or planned clinical trials of AVROBIO or our collaborators or of encountering challenges in the enrollment or dosing in such clinical trials, the risk that AVROBIO may not realize the intended benefits of our gene therapy platform, including the features of our plato platform, the risk that our investigational gene therapies or procedures in connection with the administration thereof will not have the safety or efficacy profile that we anticipate, the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical or clinical trials, will not be replicated or will not continue in ongoing or future studies or trials involving AVROBIO's investigational gene therapies, the risk that we will be unable to obtain and maintain regulatory

approvals for our investigational gene therapies, the risk that the size and growth potential of the market for our investigational gene therapies will not materialize as expected, risks associated with our dependence on third-party suppliers and manufacturers, risks regarding the accuracy of our estimates of expenses and future revenue, risks relating to our capital requirements and needs for additional financing, risks relating to clinical trial and business interruptions resulting from the COVID-19 outbreak or similar public health crises, including that such interruptions may materially delay our development timeline and/or increase our development costs or that data collection efforts may be impaired or otherwise impacted by such crises, and risks relating to our ability to obtain and maintain intellectual property protection for our investigational gene therapies. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause AVROBIO's actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in AVROBIO's most recent Annual Report on Form 10-K, as well as discussions of potential risks, uncertainties and other important factors in AVROBIO's subsequent filings with the Securities and Exchange Commission. AVROBIO explicitly disclaims any obligation to update any forward-looking statements except to the extent required by law

Note regarding trademarks: plato is a trademark of AVROBIO. Other trademarks referenced in this presentation are the property of their respective owners.

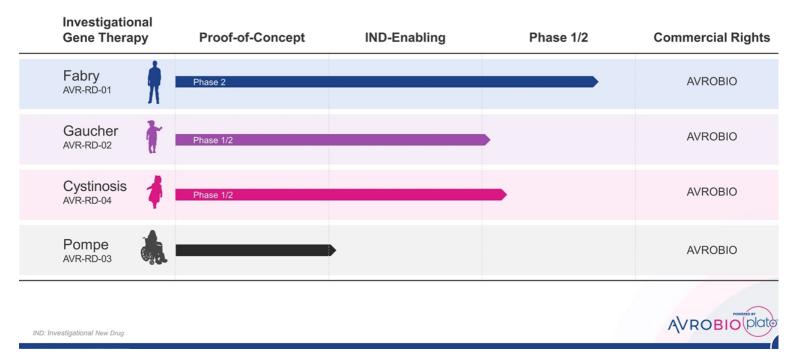
Note regarding future updates: The statements contained in this presentation reflect our current views with respect to future evets, which may change significantly as the global consequences of the COVID-19 pandemic rapidly develop. Accordingly, we do not undertake and specifically disclaim any obligation to update any forward-looking statements.

"We need to help people understand the 'invisible' devastating pain and fatigue caused by this disease."

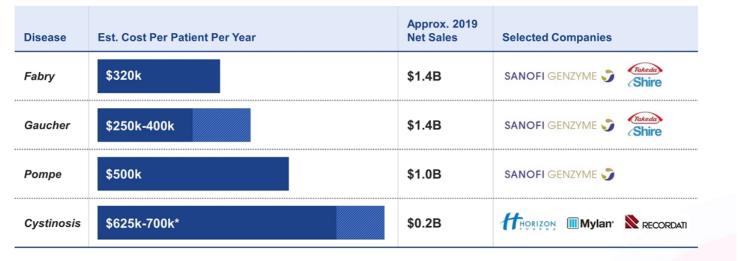
FABRY

"Bone pain feels like **gut-wrenching spikes**. If I breathe, it goes away. But you can't make a bone crisis go away."

GAUCHER

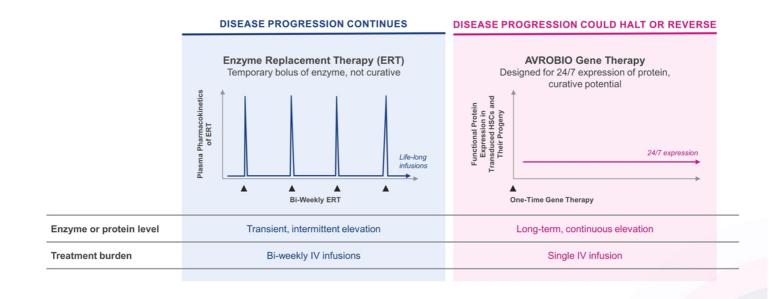

"My mom kind of explained: we have a tsunami in the back and a tornado in the front...when I'm 40 or 50 years old,

who knows how healthy I will be? I may not be strong, I may not be able to [do] my job." CYSTINOSIS

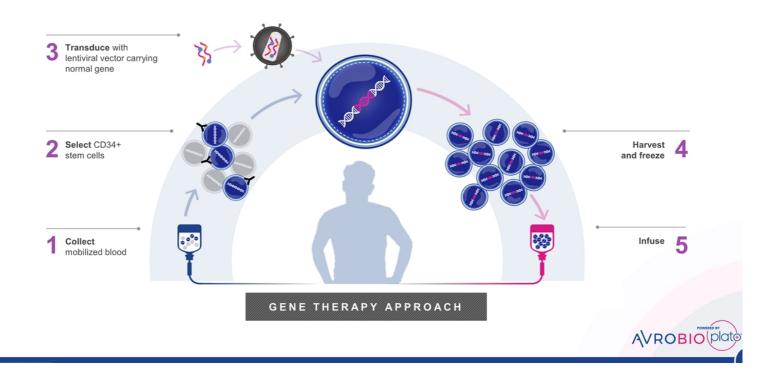

Multiple programs in the clinic

10 patients dosed to date

Addressing multi-billion dollar market opportunity


CURRENT STANDARD OF CARE COSTS

Sources: Rombach S et al, Orphanet J Rare Dis, 2013; van Dussen L et al, Orphanet J Rare Dis, 2014; WAC pricing from Redbook; 2019 Net Sales from company annual and other reports * for Horizors Procysbi oral therapy (delayed release cysteamine bitartrate) Note: Shire acquired by Takeda in 2019


Lifelong treatments vs. potential single-dose therapy

AVROBIO (plate

ERT: Enzyme Replacement Therapy; IV: Intravenous; HSC: Hematopoietic Stem Cells

Established ex vivo lentiviral approach

Fabry Disease

AVR-RD-01

UNMET NEEDS:

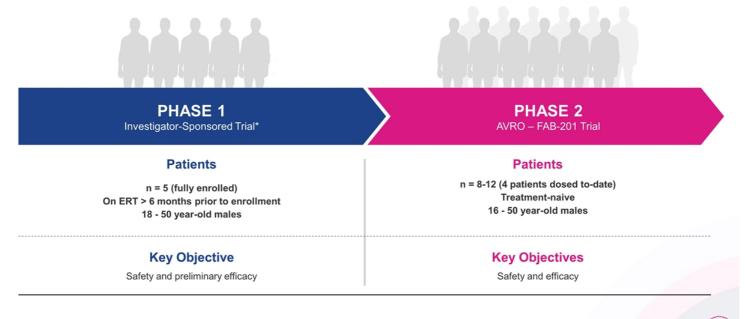
Goals for gene therapy in Fabry disease

Kidney function Unmet needs: proteinuria, polyuria, kidney failure

Cardiac function Unmet needs: left ventricular hypertrophy, fibrosis, heart failure

Neuropathic pain Unmet needs: pain and burning sensations in hands and feet, pain crises

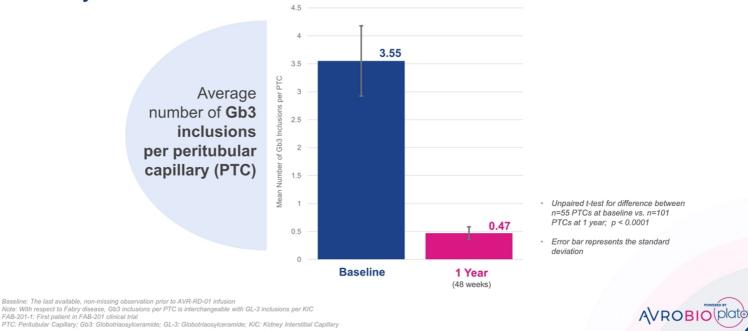
CNS complications Unmet needs: TIA/stroke, depression, impaired executive function, white matter hyperintensities


Everyday burden of illness and life expectancy Unmet needs: fatigue, inability to sweat, joint pain, abdominal pain, diarrhea, vomiting, cloudy vision, hearing loss, tinnitus, rash, angiokeratomas, biweekly infusions, shortened lifespan

Sources: Wanner C et al, Med Genetics and Metab, 2018; Burlina A, JIEMS, 2016 CNS: Central Nervous System; TIA: Transient Ischemic Attack

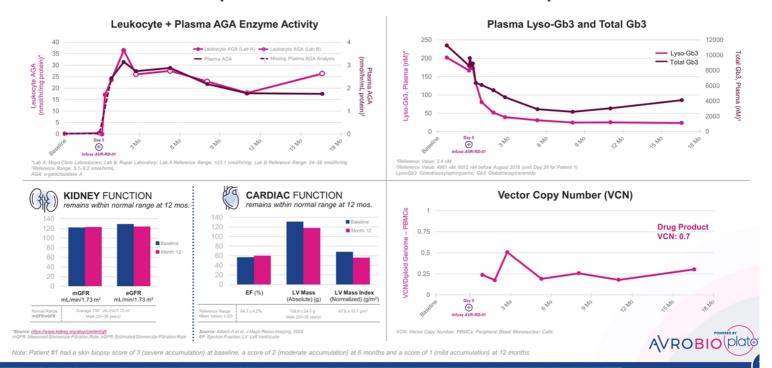
Two AVR-RD-01 Fabry clinical trials

9 patients dosed across Phases 1 and 2



AVROBIO (plate

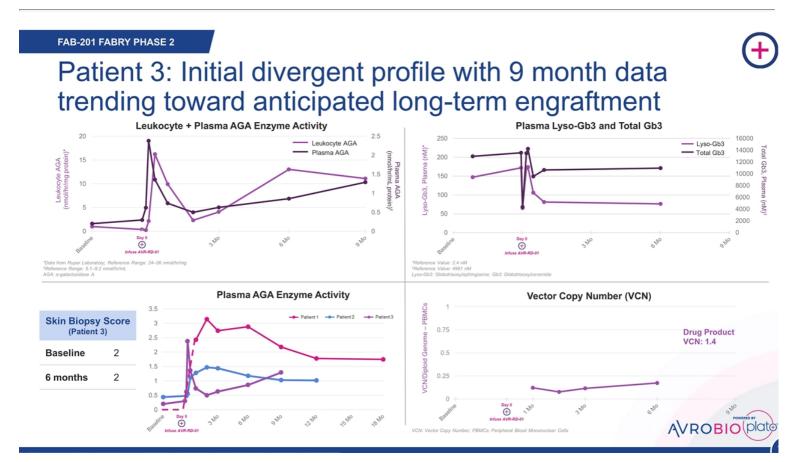
July 2019 data presented, unless otherwise specified * Sponsored by FACTs team (Fabry Disease Clinical Research and Therapeutics) in Canada


		PATIENT 1	PATIENT 2	PATIENT 3	PATIENT 4
	Age of symptom onset / diagnosis	10 / 19 years	36 / 37 years	13 / 13 years	9 / 9 years
	Age dosed with AVR-RD-01	21 years	46 years	40 years	26 years
Fabry FAB-201 · Patient Characteristics Treatment-naïve Fabry patients	Mutation	c.1021G>A (p.E341K)	c.644A>G (p.N215S)	c.639+1G>T	c.833dupA
	Primary disease signs and symptoms	 Kidney disease Chronic pain GI symptoms Decreased cold sensation 	 Cardiac disease Peripheral neuropathy Chronic pain Increased tiredness GI symptoms Intermittent tinnitus Mild high frequency hearing loss Raynaud's syndrome 	 Kidney disease GI symptoms Peripheral neuropathy Bilateral deafness Tinnitus Peripheral edema Decreased cold sensation 	 Chronic pain Peripheral neuropathy Neuropathic shuffling gait Lethargy Temperature intolerance Tinnitus Hearing loss GI symptoms
	Leukocyte AGA enzyme activity at baseline (nmol/hr/mg protein)	0.10*	2.38**	0.58**	0.46**
	Plasma lyso-Gb3 at baseline (nM)	202***	8***	147***	92***
	Comment	IgA deposits in kidney biopsy	Cardiac variant, not a classic Fabry male		

Patient 1: 87% substrate reduction in kidney biopsy at 1 year

FAB-201 FABRY PHASE 2


Patient 1: Multiple data trends sustained up to 18 months



Patient 2: Multiple data trends sustained up to 12 months

Leukocyte + Plasma AGA Enzyme Activity

Plasma Lyso-Gb3 and Total Gb3

Two AVR-RD-01 Fabry clinical trials

9 patients dosed across Phases 1 and 2

PHASE 1 Investigator-Sponsored Trial*

Patients

n = 5 (fully enrolled) On ERT > 6 months prior to enrollment 18 - 50 year-old males

Key Objectives

Safety and preliminary efficacy

FAB-201 = AVRO-RD-01-201 Study * Sponsored by FACTs team (Fabry Disease Clinical Research and Therapeutics) in Canada ERT: Enzyme Replacement Therapy PHASE 2 VRO – FAB-201 Trial

۹ 🕐 🌑

AVROBIO (plat

Patients

n = 8-12 (4 patients dosed to-date) Treatment-naive 16 - 50 year-old males

Key Objectives

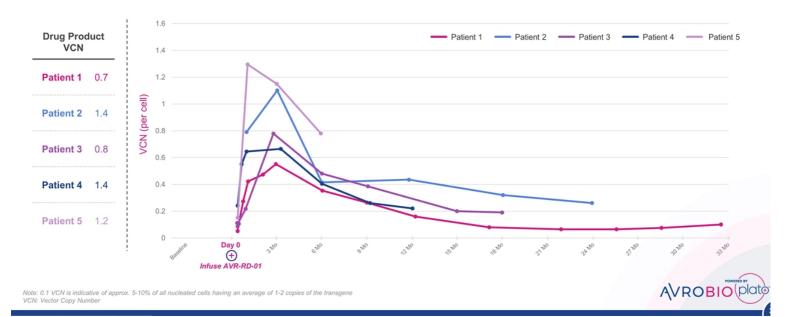
Safety and efficacy

		PATIENT 1	PATIENT 2	PATIENT 3	PATIENT 4	PATIENT 5
	Age of symptom onset / diagnosis	18 / 37 years	9 / 29 years	10 / 0 years	7 / 4 years	10 / 14 years
	Years on ERT	11 years	6 years	4 years	11 years	2 years
Fabry Phase 1 Patient Characteristics ERT-Treated Fabry Patients	Age dosed with AVR-RD-01	48 years	39 years	40 years	37 years	30 years
	Mutation	c.962A>G (p.Q321R)	c.1033T>C (p.S345P)	c.427G>C (p.A143P)	c.427G>C (p.A143P)	(p.Y134S)
	Primary disease signs and symptoms	 Kidney disease Cardiac disease GI pain GI diarrhea Angiokeratoma Insomnia 	 Kidney disease Cardiomyopathy Hypohidrosis Corneal verticillata Peripheral neuropathy GI symptoms Angiokeratoma Lymphedema Acroparesthesia 	 Cardiac Disease Tinnitus Headaches Dizziness Acroparesthesia 	 Cardiac Disease Hypohidrosis Tinnitus Corneal verticillata Angiokeratoma GI symptoms 	 Kidney disease Hypertension Hypohidrosis Tinnitus Migraines Impaired hearing Angiokeratoma Sleep apnea Asthma Depression
	Leukocyte AGA activity at baseline (nmol/hr/mg protein)	2.1*	1.1*	0.6*	2.2*	1.0*
	Plasma lyso-Gb3 at baseline (nM)	25**	26**	59**	29**	16**
	ERT discontinuation status	18 months after gene therapy dose		Did not resume ERT after gene therapy dose	6 months after gene therapy dose	

Patients 1-5: Plasma lyso-Gb3 reduction sustained up to 32 months

All patients who have discontinued ERT remain off ERT

Patients 1-5: Leukocyte and plasma enzyme activity sustained up to 32 months


Consistent trends across all patients, 4 patients > 1 year

FABRY PHASE 1

VCN stable at 32 months with consistent trend across all other patients

4 patients with 1+ years data

FABRY PHASE 1

Patient 1: Kidney function stable at 32 months

Phase 1 Fabry (5 patients) and FAB-201 (4 patients)

No unexpected safety events or trends identified

+) No SAEs related to AVR-RD-01 drug product

AEs and SAEs reported

Phase 1 AEs (n = 128):

 Generally consistent with myeloablative conditioning, underlying disease or pre-existing conditions

FAB 201 AEs (n = 98):

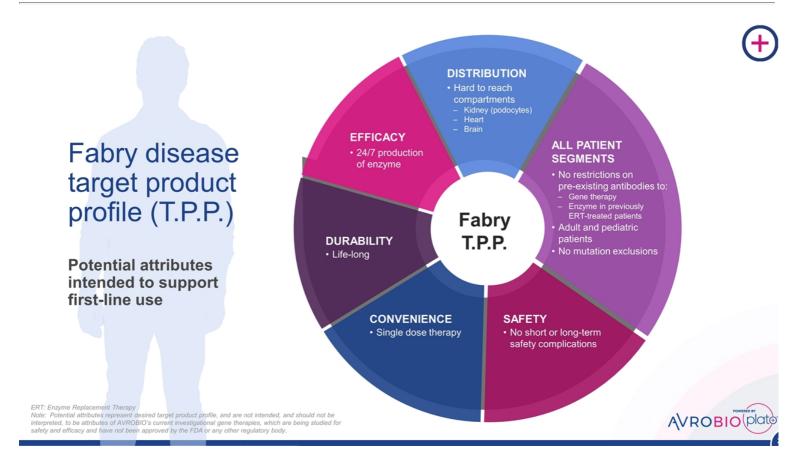
- Generally consistent with myeloablative conditioning, underlying disease or pre-existing conditions
 - Grade 1 or 2 (n = 72)
 - Grade 3 or 4 (n = 30)

Anti-AGA antibodies

Pre-existing low titers detected in 4 patients

Phase 1SAEs (n = 2):

- · Febrile neutropenia (grade 3)
- Thrombophlebitis (grade 2)


FAB 201 SAEs: (n = 4)

Pre-treatment and prior to conditioning
• Seizure (grade 2)

Post-treatment

- Dehydration, nausea, vomiting (grade 3)
- Febrile neutropenia (2 patients, grade 3 & 4)

Note: Safety data cut November 26, 2019 AE: Adverse Event; SAE: Serious Adverse Event NOTE: AVR-RD-01 is an investigational gene therapy

Building commercial capabilities

55+ product launches, including 2 gene therapies

Cystinosis

AVR-RD-04

(+)

AVROBIO (plat

UNMET NEEDS:

Goals for gene therapy in **cystinosis**

Kidney function

Unmet needs: renal Fanconi syndrome, proteinuria, chronic kidney disease, kidney failure

Vision

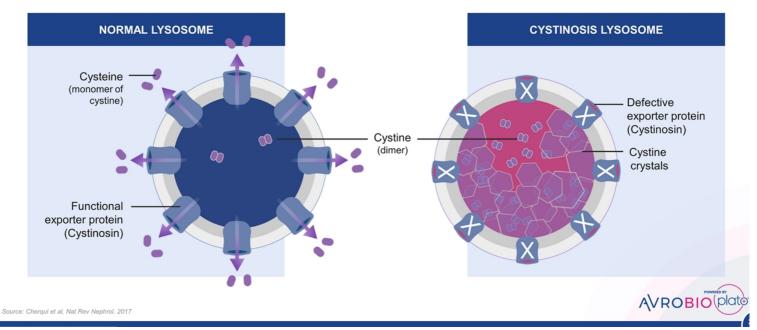
Unmet needs: corneal cystine accumulation, photophobia, involuntary eyelid closure

Endocrine disorders

Unmet needs: softening/weakening of bones, bone pain, rickets, long bone deformations, hypophosphatemia, delayed growth, hypothyroidism, pancreatic insulin insufficiency, diabetes, infertility

CNS complications

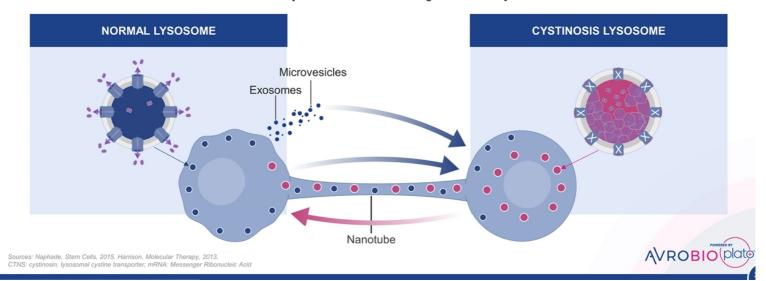
Unmet needs: myopathy, hypotonia, tremors, difficulty swallowing, neurodevelopmental issues (speech and walking delay and cognitive impairment)

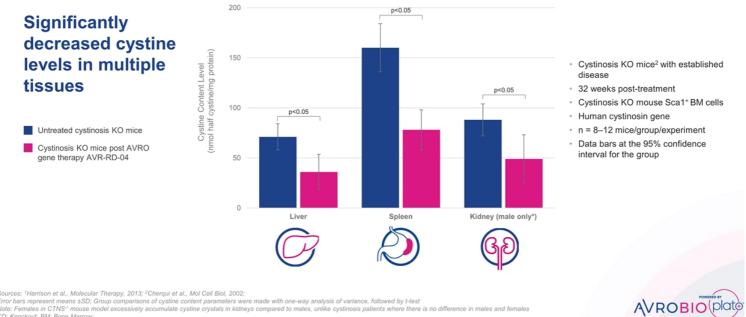

Everyday burden of illness and life expectancy

Unmet needs: medications multiple times per day that cause GI discomfort and sulfur body and breath smell, shortened lifespan

Sources: Ariceta G et al, Nephrol Dial Transplant, 2015; Elmonem M et al, Orphanet Journal of Rare Diseases, 2016; Gahl et al, NEJM, 2002; Bois et al, J Med Genet, 1976 CNS: Central Nervous System; GJ: Gastrointestinal

Cystinosis caused by defective gene that encodes cystinosin, an exporter protein


Cystine crystals build up in lysosomes causing tissue and organ damage


Drug product-derived macrophages restore normal cystine recycling

Mechanisms of action

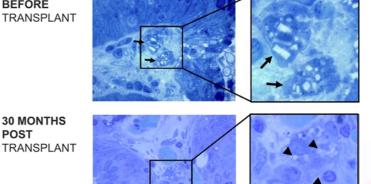
Macrophages with CTNS transgene restore cystine recycling to CTNS-ve cells via:
1. Tunneling nanotubes – transfer of corrected lysosomes, cystinosin, CTNS mRNA
2. Exosomes / Microvesicles – transfer of cystinosin, CTNS mRNA
Net result: Corrected lysosomes in cells throughout the body

Preclinical cystinosis data AVR-RD-04 preclinical proof-of-concept demonstrated¹

Sources: ¹Harrison et al., Molecular Therapy, 2013; ²Cherqui et al., Mol Cell Biol, 2002; Error bars represent means ±SD: Group comparisons of cystine content parameters were made with one-way analysis of variance. followed by L-test Note: Females in CTNS⁻⁻ mouse model excessively accumulate cystine crystals in kidneys compared to males, unlike cystinosis patients where there is no difference in males and females KO: Knockout; BM: Bone Marrow;

Allogeneic transplant demonstrated stabilized renal function, corrected polyuria and improved photophobia

Allogenic HSC Transplant University Hospital Leuven


- 16 year old male
- · Diagnosed at 2.7 years old, started on cysteamine
- Age 15 years cysteamine toxicity
- Age 16 years fully matched HLA transplant
- Acute GvHD
- First few months
- Kidney function stabilized
- **Polyuria resolved**
- 6 months
 - Photophobia score reduced from 5 (unable to open eyes even inside dark room) to 0 (no photophobia)

Cystine crystal reduction (31%) in macrophages in gastric mucosa at 30 months post transplant

BEFORE TRANSPLANT

30 MONTHS

POST

Arrows/arrowheads point to tissue macrophages

AVROBIO (plate

nem M A et al, Am. J. Transplant, 2018; HSC: Hematopoietic Stem Cell; HLA: Human Leukocyte Antigen; GvHD: Graft vs Host Dise

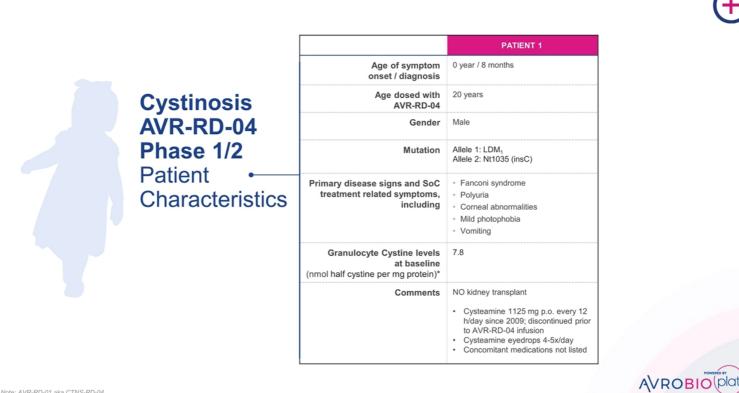
Investigator-sponsored* study of AVR-RD-04 in cystinosis patients

First patient dosed

PHASE 1/2 Investigator-Sponsored Trial*

Patients

Up to 6 patients Adults and adolescents Cohorts 1-2 ≥18 years; Cohort 3 ≥14 years Male and Female On oral and ophthalmic cysteamine


۲

AVROBIO(Pla

Key Objectives

Safety and efficacy

* Sponsored by University of California, San Diego Note: AVR-RD-04 aka CTNS-RD-04

Note: AVR-RD-01 aka CTNS-RD-04

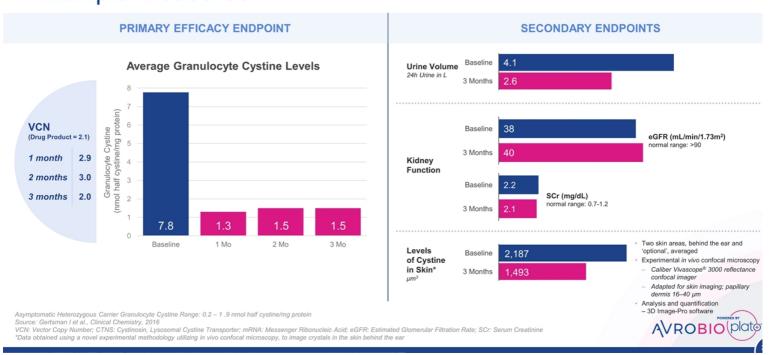
Phase 1/2 Cystinosis 1 patient dosed

No unexpected safety events or trends identified

(+) No AEs or SAEs related to AVR-RD-04 drug product

No SAEs reported

AEs reported

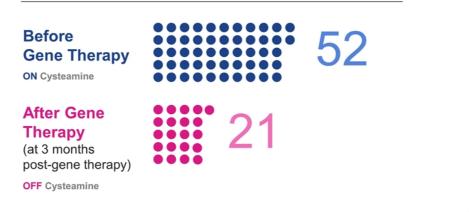

- · Consistent with myeloablative conditioning and underlying disease
- N = 22 (moderate = 9, mild = 13)
 - Pre-treatment and prior to conditioning (n = 6, not all events listed)
 - Diarrhea, hypokalemia, dizziness
 - Dehydration, vomiting

Post-treatment (n = 16, not all events listed)

- Alopecia, intermittent diarrhea, vomiting
- Mucositis, intermittent febrile neutropenia, intermittent epistaxis

- Intermittent blurry vision, intermittent hypokalemia, mucoceles
- Thrombocytopenia

Note: Safety database cut as of January 27, 2020 AE: Adverse Event; SAE: Serious Adverse Event



CYSTINOSIS PHASE 1/2

Patient 1: Reduced treatment burden at 3 months

Number of Medications and Supplements

(max per day)

AVROBIO (pla

NOTE: Investigational gene therapy

Gaucher Disease

AVR-RD-02

UNMET NEEDS:

AVROBIO (plate

Goals for gene

Hemoglobin levels and platelet counts Unmet needs: anemia, thrombocytopenia, easy bruising, bleeding

Unmet needs: bone pain, avascular necrosis, bone crisis, osteoporosis, fractures,

Hepatosplenomegaly Unmet needs: enlarged liver, enlarged spleen

Bone-related manifestations

joint destruction, skeletal abnormalities

CNS complications Unmet needs: Increased risk of GBA-Parkinson's disease

Everyday burden of illness, and life expectancy Unmet needs: fatigue, pain, lung disease, biweekly infusions, shortened lifespan

Sources: Grabowski G et al. Online Metabolic and Molecular Bases of Inherited Disease, 2018; Weinreb N et al, AJH, 2008; Pastores G et al, Semin Hernatol, 2004 CNS: Central Nervous System; GBA: gene coding for glucocerebrosidase

Type 1 Disease

therapy in

Gaucher

Long-term follow-up study highlights significant unmet need in Gaucher Type 1

Despite standard-of-care ERT, disease progression continues and unmet need remains.

Incomplete therapeutic response is common:

- 60% of patients failed to achieve at least one of the six therapeutic goals evaluated after 4+ years of ERT¹
- A clinically significant percentage of patients continue to exhibit bone pain, organomegaly and cytopenia after 10 years of ERT²
- 25% of patients continue to suffer from physical limitations after two years of ERT, primarily due to bone disease³

Persistence after 10 years ERT [†]	Non-splenectomized Patients	Splenectomized Patients
Anemia	12.4%	8.8%
Thrombocytopenia*	22.7%	0.7%
Splenomegaly*	38.3%	N/A
Hepatomegaly*	14.3%	18.8%
Bone Pain	42.9%	62.5%
Bone Crisis	7.4%	16.7%

* Higher persistence rates observed when more severe manifestations were present at baseline

[†] Persistence refers to the presence of anemia, bone pain, bone crisis, or at least moderate thrombocytopenia, splenomegaly, or hepatomegaly, present after 10 years of ERT among those with baseline involvement of these parameters (from a registry of 757 GD1 patients; Weinreb et al., 2013).

Following 10 years of treatment, ~26% of patients were receiving between 45-150 U/kg EOW, and 96% of these individuals were receiving doses between 45-90 U/kg EOW.

Sources: ¹Weinreb N et al. Amer J Hematol, 2008; ²Weinreb N et al. J Inherit Metab Dis, 2013; ³Giraldo P et al. Qual Life Res, 2005. GD1: Gaucher Disease Type 1; SOC: Standard of Care; ERT: Enzyme Replacement Therapy; EOW: Every Other Week

GAU-201: Phase 1/2 study in Gaucher Type 1 patients

PHASE 1/2 AVR-RD-02 Trial

Patients

n = 8 - 16 Type 1 Gaucher Treatment naïve or on ERT 16 - 35 year-old Male and Female

) 🔄 🕙

AVROBIO (plat

Key Objectives

Safety, Engraftment, Efficacy, ERT-independence

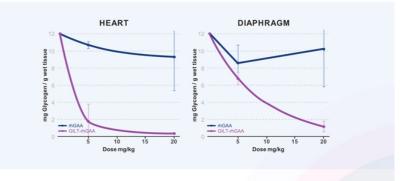
GAU-201: AVR-RD-02 Study; ERT: Enzyme Replacement Therapy

Pompe disease

AVR-RD-03

Pompe preclinical program advancing

AVROBIO plate


Integrated three-part approach

THE CHALLENGE

- Pompe requires 20x more ERT than Fabry or Gaucher
- Requires GAA activity restored to **muscle and CNS**

AVROBIO's APPROACH

- 1. Potent transgene promoter
- 2. GILT uptake tag
- 3. plato[™] for CNS impact

GILT-tagged Recombinant Human (rh)GAA impacts levels of stored glycogen compared to non GILT-tagged Recombinant Human (rh)GAA in a Pompe mouse model

GILT: Glycosylation-Independent Lysosomal Targeting Sources: Burton B et al, J Pediatr, 2017; Ausems M et al, Eur J Hum Genet, 1998; Gungor D et al, Orphanet J Rare Dis, 2011; Maga JA et al, J of Bio Chem, 2013

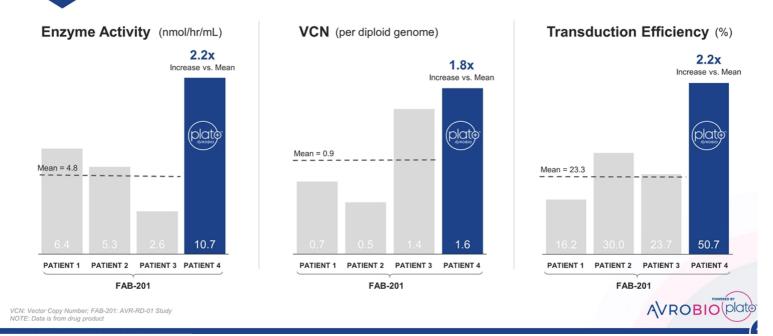
plato[™]

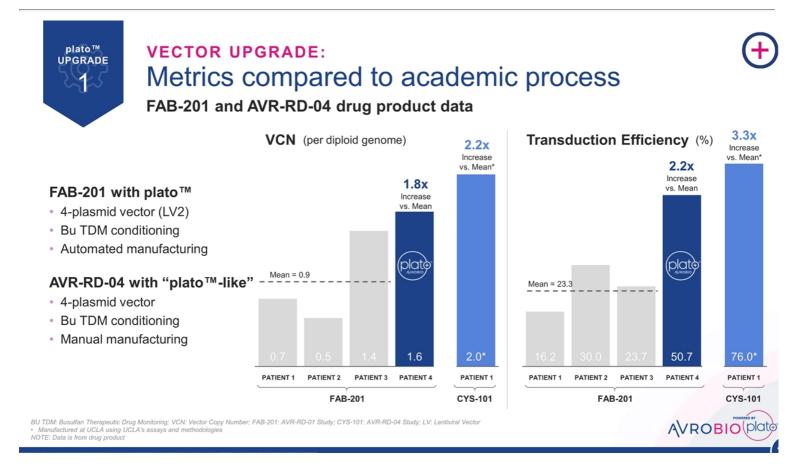
AVROBIO's foundation designed to scale gene therapy worldwide

State-of-the-art technologies including automated manufacturing platform

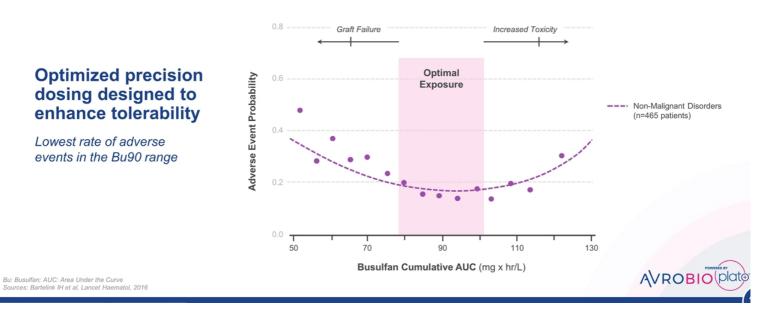
Optimized
 for performance

 Redefines manufacturing best practices



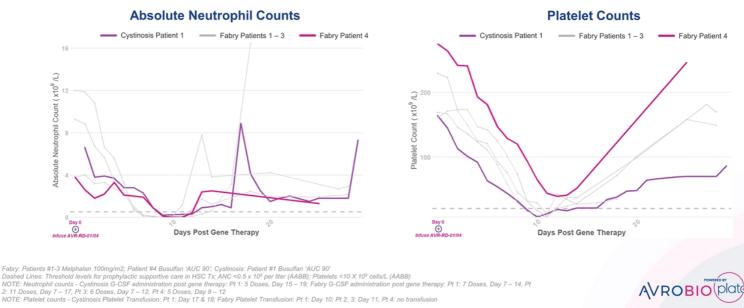

plato[™]: Three upgrades designed to optimize potency, safety and durability

* TDM (therapeutic drug monitoring)



PRECISION CONDITIONING UPGRADE: Targeted busulfan intended to balance optimal engraftment with enhanced safety

Meta-analysis of 465 patients identified optimal exposure

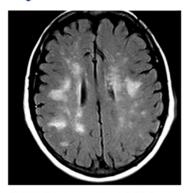


PRECISION CONDITIONING UPGRADE: Precision dosing via state-of-the-art patient therapeutic drug monitoring (TDM)

	APHERESIS	PERSONALIZED CONDITIONING WITH PRECISION DOSING	DRUG PRODUCT	PERI-INFUSION PERIOD
4 clinic visits	2 clinic visits	10-12 hr clinic visits		Ambulatory care occurring in close proximity to hospital
D -70 D -69 D -68 D -67	D -66 D -65	⊭ D-6 D-5 D-4 D-3 D-2 D-1	D0	D 1 - 7 D 8 - 14 D 15 - 28
Plerixafor	SubQ	Anticonvulsant tablets BID		
G-CSF	HSC	STARTING DOSE: 3.2 mg/kg TARGET AUC: 90 mg+hrl. +/- 10% Musulfan Medweight AUC AUC AUC Momed Dose Informed Dose Informed Dose Informed Dose Informed Dose Informed Dose	3- 20 x 10 ⁶ CD34+ cells/kg	Nourconing & MANAGEMENT OF POTENTIAL SIDE EFFECTS Side-effects typically peak over 2-4 days ····························
				G-CSF If needed, to increase neutrophil counts Platelet infusion If needed, to increase platelet levels
		INFUSION PERIOD: time from infusion to discharge; TDM: therape int, see busulfan label for a complete list of side-effects. Ambulatory		

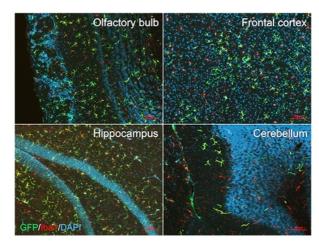


Similar for busulfan and melphalan across Fabry and cystinosis patients



plato™ UPGRADE

2


PRECISION CONDITIONING UPGRADE: Designed to access "hard-to-reach" compartments, including the brain

plato™ UPGRADE

2

MRI: 54 year old with Fabry disease demonstrating white matter lesions (WMLs)

GFP: Marker of engrafted cells Iba1: Marker of microglia cells DAPI: Nuclear stain irrespective of cell type

Global microglial coverage of mouse brain at 4 months post gene-modified HSC transplantation

- Widespread engraftment in regions critical for cognitive, motor, olfactory, and visual function
- Engrafted microglia/microglia-like cells have comparable morphology and classical lineage markers with endogenous microglia

Source: Buechner S, J. Neurol, Neurosurg, Psychiatry, 2008 MRI: Magnetic Resonance Imaging; ERT: Enzyme Replacement Therapy; WMLs: White Matter Lesions; HSC: Hematopoietic Stem Cell

AUTOMATION UPGRADE: Automated, scalable manufacturing system

Designed to elevate quality and overcome historic CMC bottlenecks

Expanded Scale

Potential to reach thousands of patients per year

Broader Reach

Portable platform designed for flexible global production using low grade clean rooms

High Quality

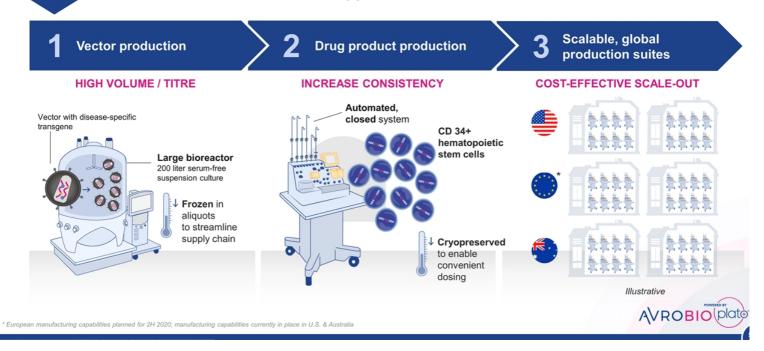
Automated, closed system designed to improve quality and consistency

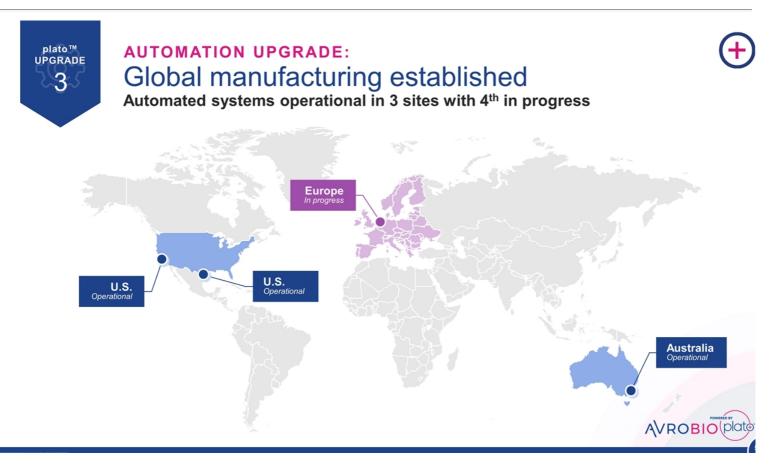
Enhanced Convenience

Cryopreservation simplifies logistics and patient scheduling

Lower Costs

Designed to create efficiencies in vector design / scalable cell and vector production

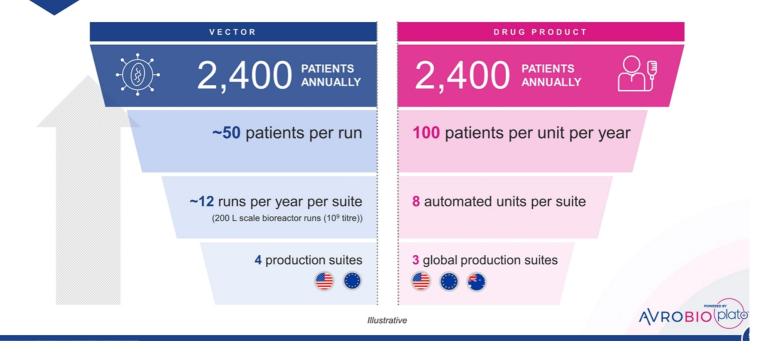

AUTOMATION UPGRADE: Designed to deliver large-scale manufacturing

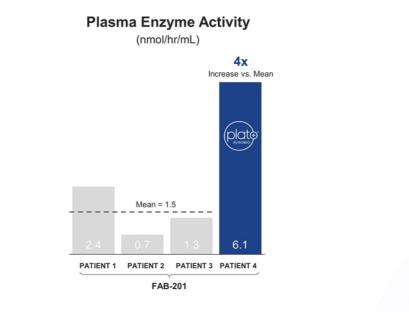

Differentiated, cost-effective approach

plato™

UPGRADE

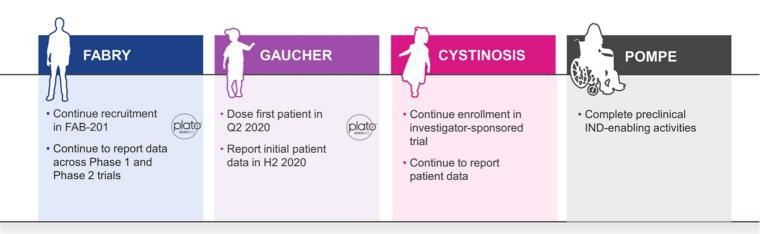
3




^{plato™} UPGRADE 3

AUTOMATION UPGRADE: Poised to manufacture at scale

Designed to optimize potency and safety, and overcome historic CMC bottlenecks



AVROBIO(P

FAB-201: AVR-RD-01 Study

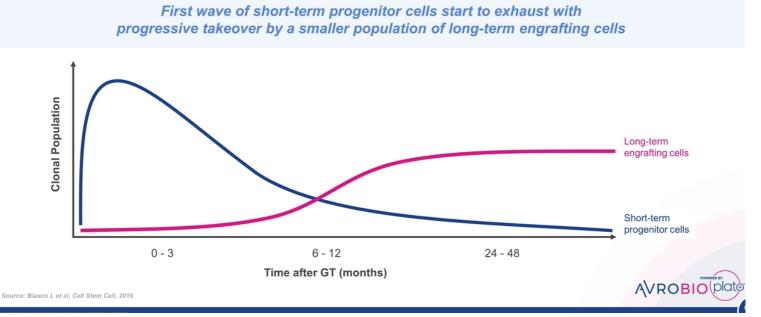
Milestones anticipated across the pipeline in 2020

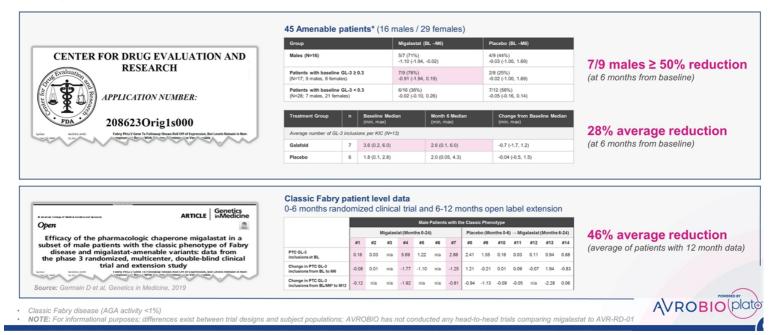
Clinical activities and timelines subject in all respects to ongoing and evolving COVID-19 pandemic*



AVROBIO to hold first R&D Day in 2020

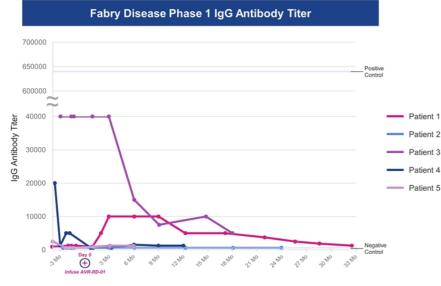
AVROBIO (plat


* For additional information, see the Company's Current Report on Form 8-K filed with the SEC on March 30, 2020, and the Company's risk factor related to COVID-19 in the Company's Annual Report on Form 10-K filed with the SEC on March 16, 2020.


Appendix

Hematopoietic reconstitution occurs in two distinct phases $\textcircled{\bullet}$ A few thousand long-term engrafting cells stably sustain levels of transgene product

Precedent for use of kidney biopsy data for FDA approval of drug candidate for Fabry disease


Migalastat approved on % reduction in GL-3 inclusions per KIC as compared to placebo

FABRY PHASE 1

Reduction of pre-existing anti-ERT drug IgG antibodies following AVR-RD-01

Suggests potential as a therapeutic option independent of pre-existing antibodies

ERT: Enzyme Replacement Therapy; IgG: Immunoglobulin G; MPS-1: Mucopolysaccharidosis Type 1; IDUA: Iduronidase: SR-TIGET: San Raffaele Telethon Institute for Gene Therapy; LV: Lentiviral; rhIDUA: Recombinant Human alpha-L-Iduronidase

Similar Results Observed in Other Studies

San Raffaele Telethon Institute for Gene Therapy (SR-TIGET)

Change in pre-existing antibodies reported for Hurler disease (MPS-1)

- Ex vivo LV-CD34+ gene therapy with conditioning
 N = 6
- Evaluable patients (5/6) demonstrated sustained, supraphysiologic blood IDUA activity
- 4/5 prior ERT (rhIDUA) exposure (5-28 months)
- 4/5 pre-existing ERT-induced IgG antibodies
- 6/6 anti-rhIDUA IgGs undetectable 2 months post gene therapy

Source: Gentner B et al., Blood, 2019

