AVROBIO Freedom from a lifetime of disease

Corporate Presentation
October 2019

Disclaimer

This presentation has been prepared by AVROBIO, Inc. ("AVROBIO") for informational purposes only and not for any other purpose. Certain information contained in this presentation and statements made orally during this presentation relate to or are based on studies, publications, surveys and other data obtained from third-party sources and AVROBIO's own internal estimates and research. While AVROBIO believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and AVROBIO makes no representation as to the adequacy, fairness, accuracy or completeness of any information obtained from third-party sources. While AVROBIO believes its internal research is reliable, such research has not been verified by any independent source.

This presentation may contain forward-looking statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words such as "aims," "anticipates," "believes," "could," "estimates," "expects," "forecasts", "goal," "intends," "may" "plans," "possible," "potential," "seeks," "will," and variations of these words or similar expressions that are intended to identify forward-looking statements. These forwardlooking statements include, without limitation, statements regarding our business strategy, prospective products and goals, the therapeutic potential of our investigational gene therapies, the design, enrollment and timing of ongoing or planned clinical trials, clinical trial results, product approvals and regulatory pathways, potential regulatory approvals and the timing thereof.

anticipated benefits of our gene therapy platform, the expected safety profile of our investigational gene therapies, timing and likelihood of success, plans and objectives of management for future operations, future results of anticipated products, and the market opportunity for our investigational gene therapies. Any such statements in this presentation that are not statements of historical fact may be deemed to be forward-looking statements.

Any forward-looking statements in this presentation are based on AVROBIO's current expectations, estimates and projections about our industry as well as management's current beliefs and expectations of future events only as of today and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that any one or more of AVROBIO's investigational gene therapies will not be successfully developed or commercialized, the risk of cessation or delay of any ongoing or planned clinical trials of AVROBIO or our collaborators or of encountering challenges in the enrollment or dosing in such clinical trials, the risk that AVROBIO may not realize the intended benefits of our gene therapy platform, the risk that our investigational gene therapies or procedures in connection with the administration thereof will not have the safety or efficacy profile that we anticipate, the risk that prior results, such as signals of safety, activity or durability of effect, observed from

preclinical or clinical trials, will not be replicated or will not continue in ongoing or future studies or trials involving AVROBIO's investigational gene therapies, the risk that we will be unable to obtain and maintain regulatory approvals for our investigational gene therapies, the risk that the size and growth potential of the market for our investigational gene therapies will not materialize as expected, risks associated with our dependence on third-party suppliers and manufacturers. risks regarding the accuracy of our estimates of expenses and future revenue, risks relating to our capital requirements and needs for additional financing, and risks relating to our ability to obtain and maintain intellectual property protection for our investigational gene therapies. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause AVROBIO's actual results to differ from those contained in the forward-looking statements, see the section entitled "Risk Factors" in AVROBIO's most recent Quarterly Report on Form 10-Q, as well as discussions of potential risks, uncertainties and other important factors in AVROBIO's subsequent filings with the Securities and Exchange Commission. AVROBIO explicitly disclaims any obligation to update any forward-looking statements except to the extent required by law.

Note regarding trademarks: plato is a trademark of AVROBIO. Other trademarks referenced in this presentation are the property of their respective owners.

AVROBIO

Developing gene therapies designed to cure rare diseases

- Deep pipeline targeting lysosomal storage disorders (LSDs) where SoC ~\$4B 2018 net sales
- Compelling Fabry data across Phase 1 and Phase 2 trials
- Gaucher and cystinosis trial recruitment underway
- Powered by plato[™] our commercial-stage manufacturing platform
- Management comprised of cell, gene and rare disease industry leaders
- Multiple near-term milestones anticipated

Cell, gene and rare disease industry leaders

MANAGEMENT TEAM .

Geoff MacKay President and CEO

Birgitte Volck, PhD, MD President of Research and Development

Kim Warren. PhD Head of Operations

Erik Ostrowski Chief Financial Officer

Chairman

BOARD OF DIRECTORS —

ATLAS VENTURE

Genentech

A Member of the Roche Group

Chris Mason, MD, PhD. FRCS Chief Science Officer

Steven Avruch. JD General Counsel

Philip Vickers, PhD

Bruce Booth, DPhil

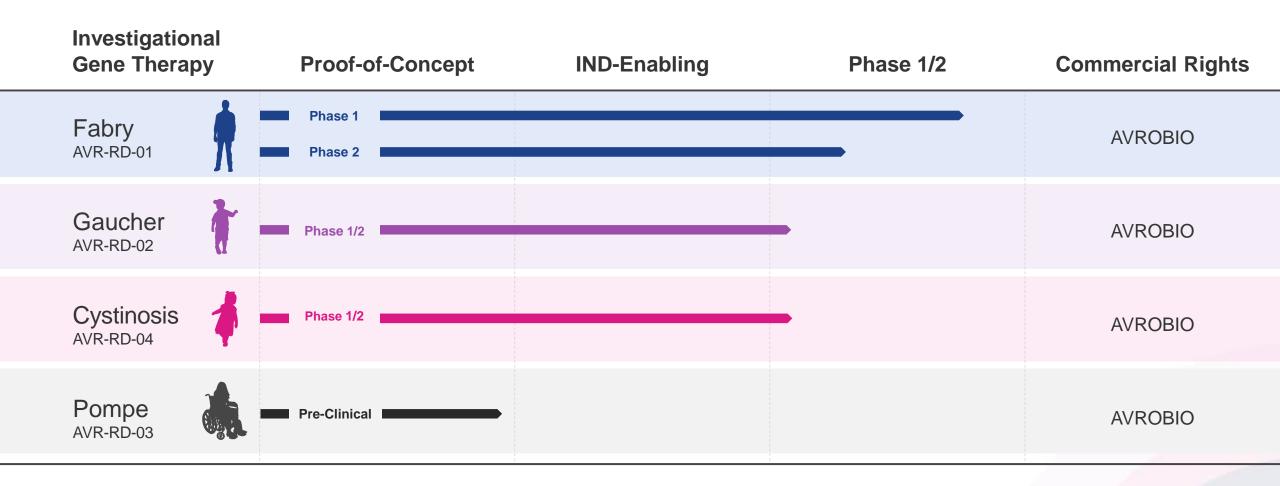
Deanna Petersen, MBA Chief Business Officer

Georgette Verdin Chief Human Resources Officer

Kathryn McNaughton, PhD SVP Portfolio & Program Management

Josie Yang, PhD Head of Regulatory Affairs

Geoff MacKay

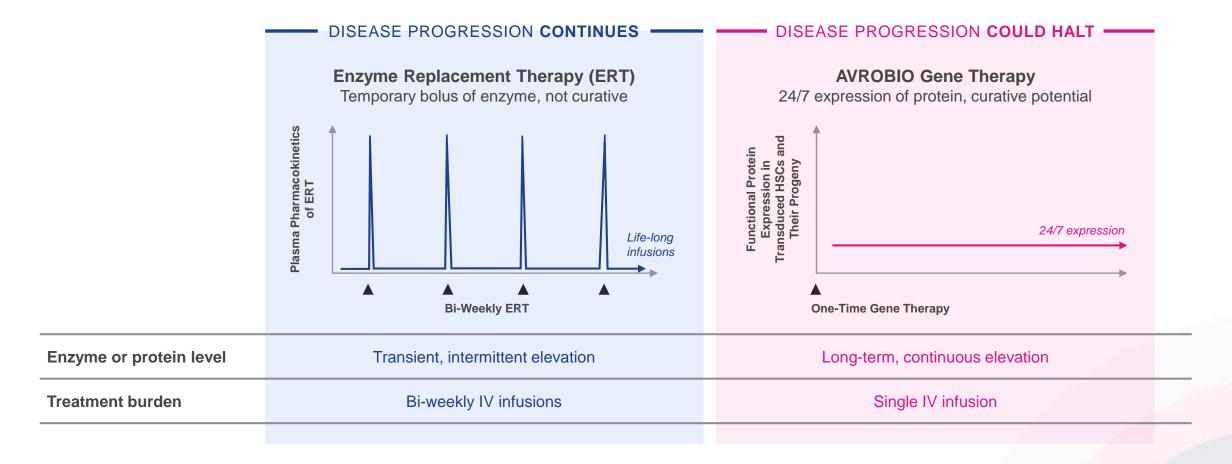


Steady stream of clinical programs

4 clinical trials up and running

Addressing multi-billion dollar markets

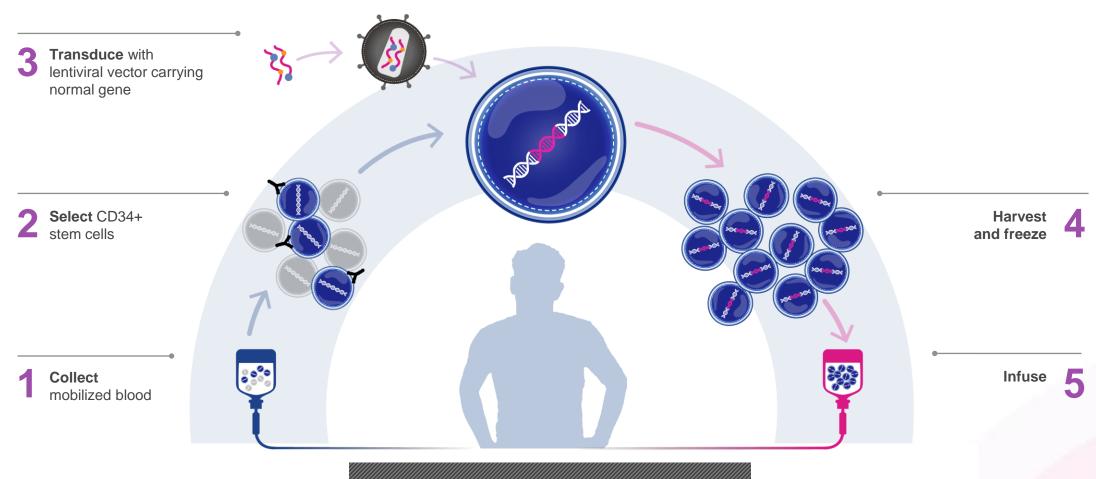
CURRENT STANDARD OF CARE COSTS


Disease	Est. Cost Per Year	Approx. 2018 Net Sales	Selected Companies
Fabry	\$320k	\$1.4B	SANOFI GENZYME Shire
Gaucher	\$250k-400k	\$1.4B	SANOFI GENZYME Shire
Pompe	\$500k	\$1B	SANOFI GENZYME 🧳
Cystinosis	\$625k-700k*	\$0.2B	HORIZON III Mylan° RECORDATI

Sources: Rombach S et al, Orphanet J Rare Dis, 2013; van Dussen L et al, Orphanet J Rare Dis, 2014; WAC pricing from Redbook; 2018 Net Sales from company annual and other reports *= for Horizon's Procysbi oral therapy (delayed release cysteamine bitartrate)

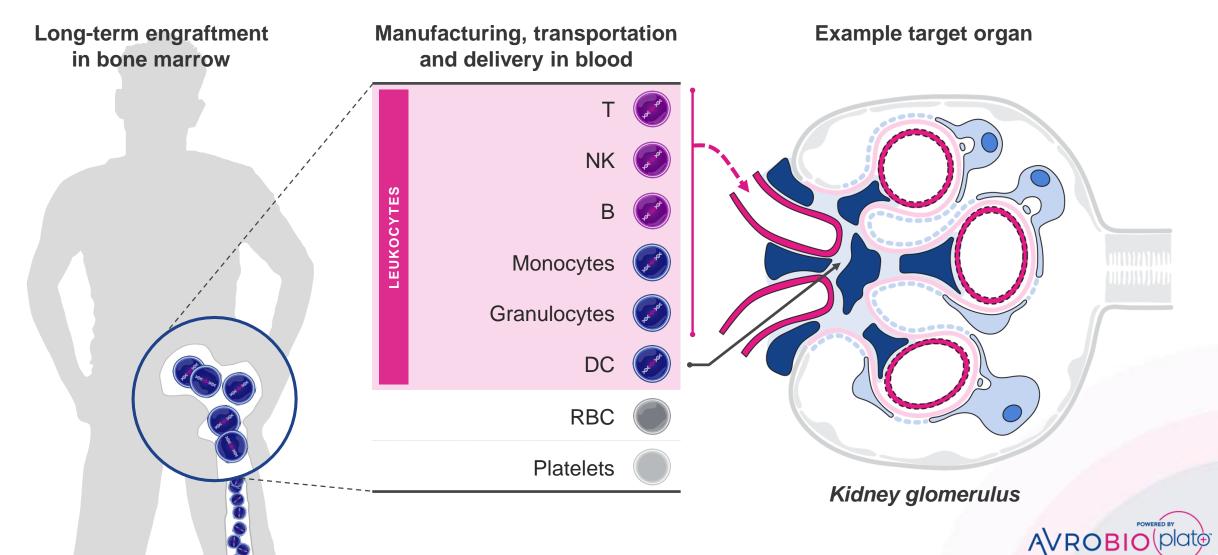
AVROBIO POWERED BY

Life-long treatments vs. potential single dose cure



7

One platform applied across our portfolio



GENE THERAPY PLATFORM

Endogenous enzyme delivered to tissues via multiple cell lineages

Two AVR-RD-01 Fabry clinical trials

8 patients dosed across Phases 1 and 2

PHASE 1

Investigator-Sponsored Trial*

Patients

n = 5 (fully enrolled)
On ERT > 6 months prior to enrollment
18 - 50 year-old males

Key Objective

Safety and preliminary efficacy

PHASE 2

AVRO - FAB-201 Trial

Patients

n = 8-12 (3 patients dosed to-date)

Treatment-naive

16 - 50 year-old males

Key Objectives

Safety and efficacy

FAB-201 Primary and secondary endpoints

FAB-201 Primary efficacy endpoint

Average number of Gb3 inclusions per kidney peritubular capillary (PTC)

- Biopsy at 1 year vs. baseline
- FDA-recognized endpoint in Fabry

Primary safety endpoints

AEs, SAEs Clinical labs, ECG, vital signs Antibodies, RCL, ISA

Secondary efficacy endpoints

ORGAN AND SYSTEM FUNCTION

Kidney function Cardiac function GI distress Pain

PATIENT WELL-BEING

Clinical status
Quality of life

BIOMARKERS

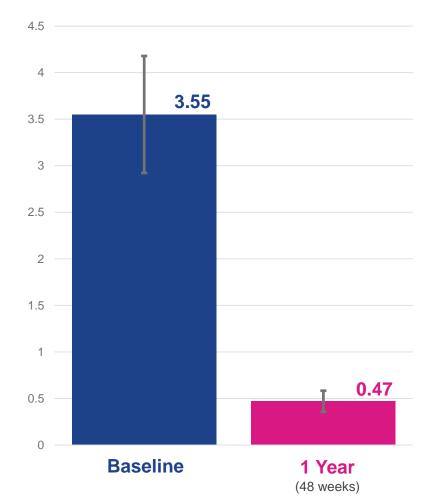
Toxic metabolite – lyso-Gb3 in plasma, urine Substrate – Gb3 in plasma, urine, skin Enzyme – AGA in leukocytes, plasma VCN

Gb3, also referred to as GL-3: a type of fat that builds in cells, resulting in damage to kidneys, heart and brain

Peritubular capillaries (PTCs), also referred to as kidney interstitial capillaries (KICs) convey blood after filtration in the glomeruli, enabling it to eventually exit the kidneys and return to the circulatory system

FAB-201 - Patient Characteristics

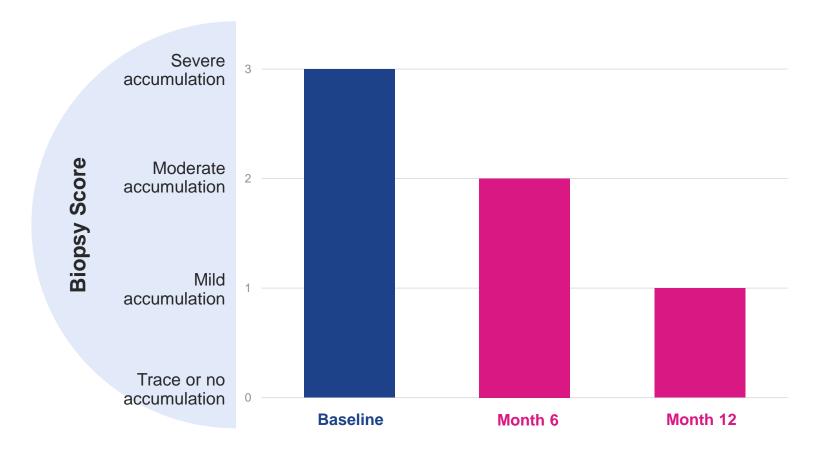
	PATIENT 1	PATIENT 2	PATIENT 3
Age symptom onset / diagnosis	10 / 19 years	36 / 37 years	13 / 13 years
Age dosed with AVR-RD-01	21 years	46 years	40 years
Mutation	c.1021G>A (p.E341K)	c.644A>G (p.N215S)	c.639+1G>T
Primary disease signs and symptoms	Kidney diseaseChronic painGI symptomsDecreased cold sensation	 Cardiac disease Peripheral neuropathy Chronic pain Increased tiredness GI symptoms Intermittent tinnitus Mild high frequency hearing loss Raynaud's syndrome 	 Kidney disease GI symptoms Peripheral neuropathy Bilateral deafness Tinnitus Peripheral edema Decreased cold sensation
Leukocyte AGA enzyme activity at baseline (nmol/h/mg)	0.10*	2.38**	0.58**
Plasma lyso-Gb3 at baseline (nM)***	202	8	147
Comment	IgA deposits in kidney biopsy	Cardiac variant, not a classic Fabry male	


^{*} Mayo Lab, ref range ≥23.1 nmol/h/mg

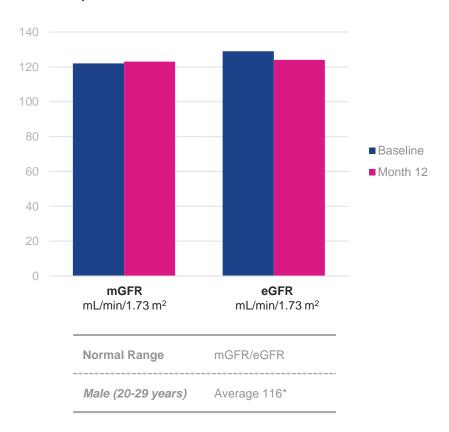
^{**} Rupar Lab, ref range 24-56 nmol/h/mg *** Reference value ≤ 2.4 nM

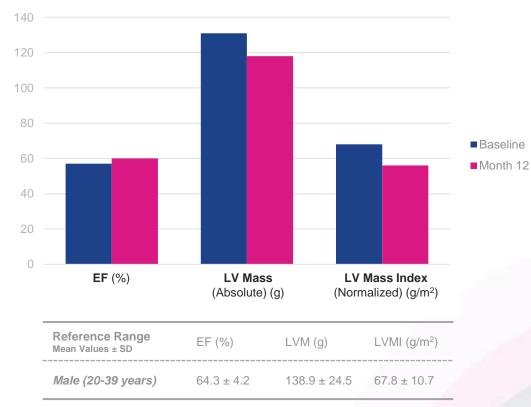
FAB-201 Patient 1: 87% substrate reduction in kidney biopsy

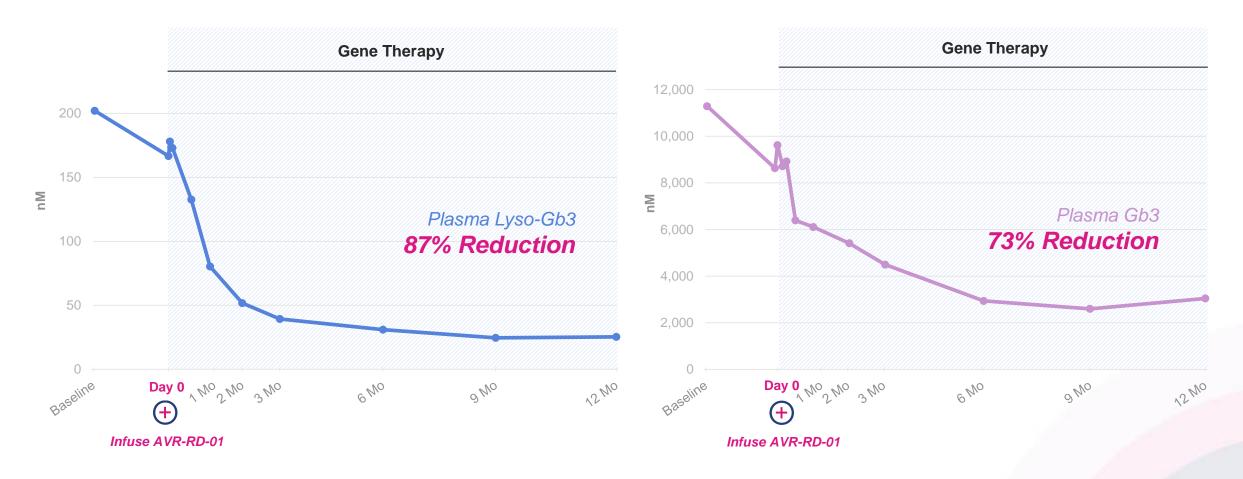
Average number of **Gb3** inclusions per peritubular capillary (PTC)


- Unpaired t test for difference between n=55 PTCs at baseline vs. n=101 PTCs at 1 year; p < 0.0001
- Error bar represents the standard deviation

Baseline: The last available, non-missing observation prior to AVR-RD-01 infusion **Note:** With respect to Fabry disease, Gb3 inclusions per PTC is interchangeable with GL-3 inclusions per KIC **FAB-201-1:** First patient in FAB-201 clinical trial

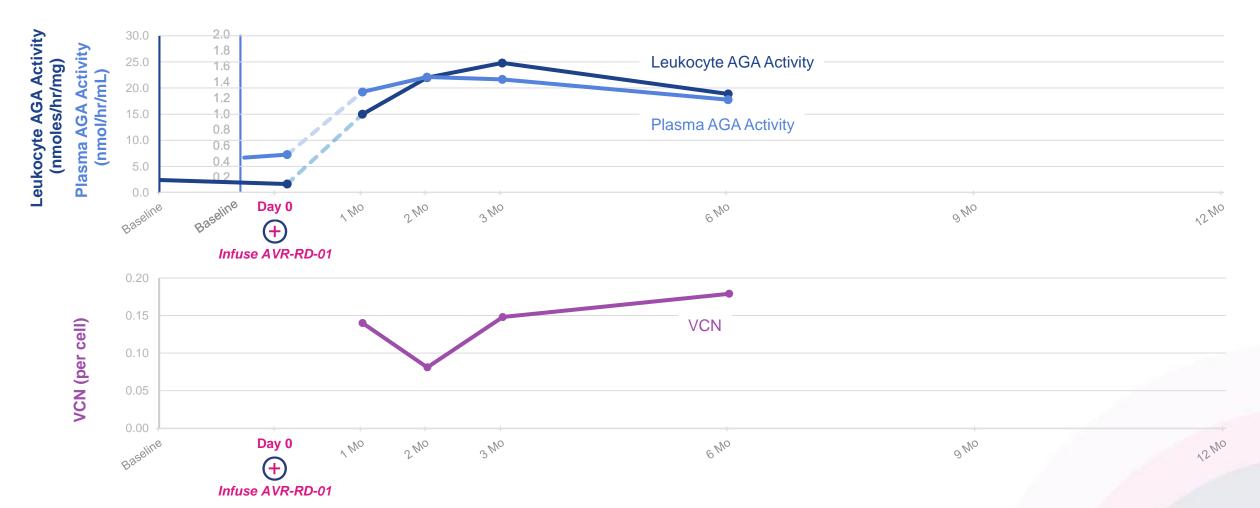



FAB-201 Patient 1: Kidney and cardiac function stable at one year



FAB-201 Patient 1: Substantial reduction in plasma substrate / metabolite levels, sustained at 1 year

FAB-201 Patient 1: Sustained leukocyte and plasma enzyme activity at 1 year; VCN stable



Note: 0.1 VCN is indicative of approx. 5-10% of all nucleated cells having an average of 1-2 copies of the transgene **Baseline:** The last available, non-missing observation prior to AVR-RD-01 infusion

FAB-201 Patient 2: Sustained leukocyte and plasma enzyme activity and VCN at 6 months

Note: Patient 3 had plasma AGA activity of 0.740, leukocyte AGA activity of 9.94 and VCN of 0.12 as of 1 month **Note:** 0.1 VCN is indicative of approx. 5-10% of all nucleated cells having an average of 1-2 copies of the transgene **Baseline:** The last available, non-missing observation prior to AVR-RD-01 infusion

FAB-201 3 patients dosed

No unexpected trends or safety events identified

No AEs or SAEs related to AVR-RD-01 drug product

AEs and SAEs reported

- AEs
 - Generally consistent with myeloablative conditioning, underlying disease or pre-existing conditions
- SAEs
 - Pre-treatment
 - Seizure (resolved)
 - Post-treatment
 - Dehydration, nausea, vomiting (resolved)
 - Febrile neutropenia (resolved)

Anti-AGA antibodies

Transient low titer in 1 subject (resolved)

Two AVR-RD-01 Fabry clinical trials

8 patients dosed across Phases 1 and 2

PHASE 1

Investigator-Sponsored Trial*

Patients

n = 5 (fully enrolled)
On ERT > 6 months prior to enrollment
18 - 50 year-old males

Key Objective

Safety and preliminary efficacy

PHASE 2

Patients

n = 8-12 (3 patients dosed to-date)
Treatment-naive
16 - 50 year-old males

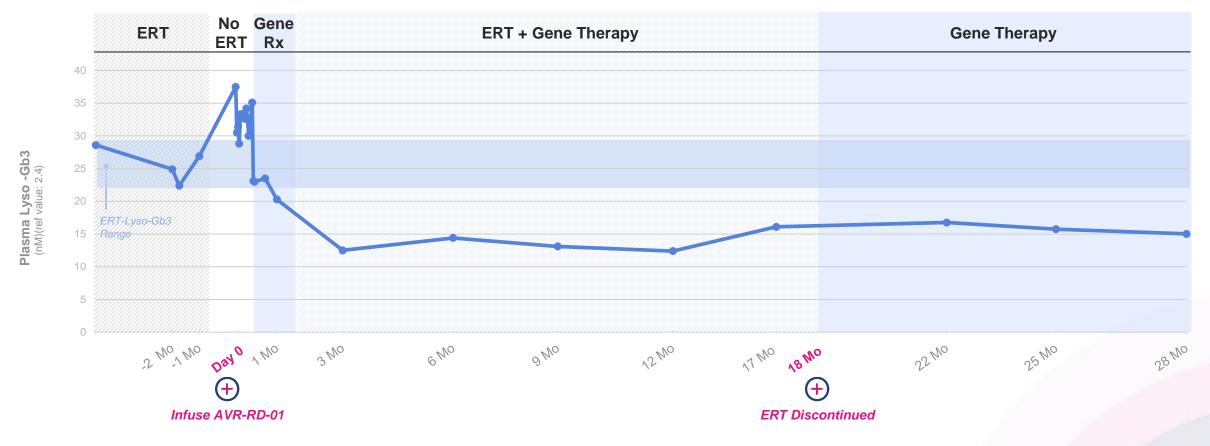
Key Objectives

Safety and efficacy

Phase 1 Patient Characteristics

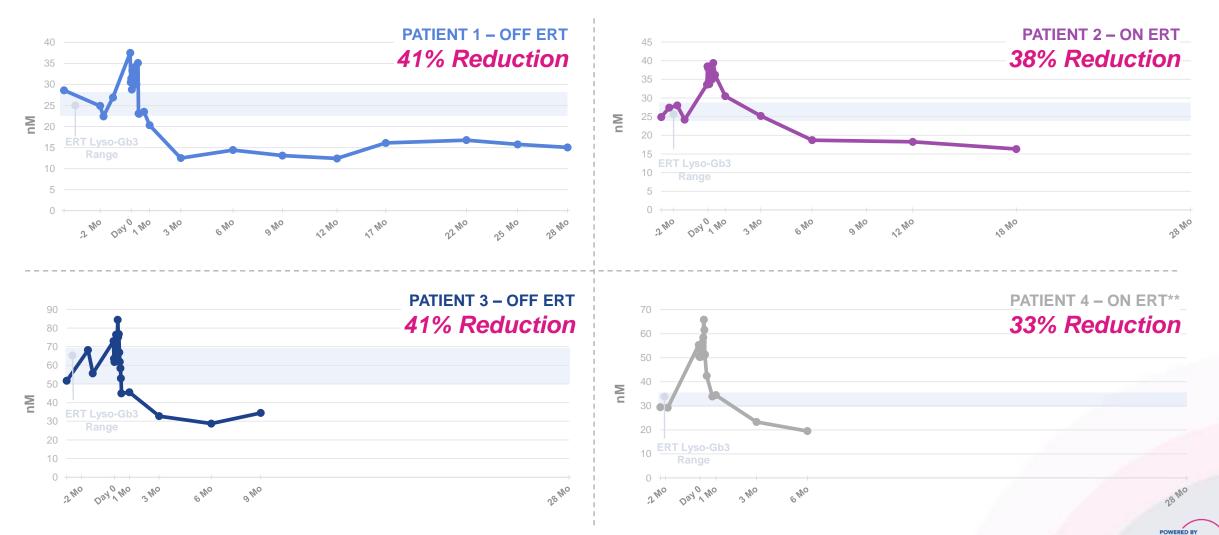
	PATIENT 1	PATIENT 2	PATIENT 3	PATIENT 4	PATIENT 5		
Age symptom onset / diagnosis	18 / 37	9 / 29	10/0	7 / 4	10 / 14		
Years on ERT	11	6	4	11	2		
Age dosed with AVR-RD-01	48	39	40	37	30		
Mutation	c.962A>G (p.Q321R)	c.1033T>C (p.S345P)	c.427G>C (p.A143P)	c.427G>C (p.A143P)	(p.Y134S)		
Primary disease signs and symptoms	 Kidney disease Cardiac disease GI pain GI diarrhea Angiokeratoma Insomnia 	 Kidney disease Cardiomyopathy Hypohidrosis Corneal verticillata Peripheral neuropathy GI symptoms Angiokeratoma Lymphedema Acroparesthesia 	• Tinnitus • Hypohid • Headaches • Tinnitus • Dizziness • Corneal verticilla • Angioke • GI symp • Tinnitus • Hypohid • Tinnitus • Corneal verticilla • Angioke • GI symp		 Hypertension Hypohidrosis Tinnitus Migraines Impaired hearing 		
Leukocyte AGA activity at baseline* (nmol/h/mg)	2.1	1.1	0.6	2.2	1.0		
Plasma lyso-Gb3 at baseline (nM)**	25	26	59	29	16		
Discontinued ERT	18 months after gene therapy dose		Did not resume ERT after gene therapy dose	7 months after gene therapy dose			

^{*} Rupar Lab, ref range 24-56 nmol/h/mg


^{**} Reference value ≤ 2.4 nM

Phase 1: Plasma lyso-Gb3 reduction sustained >2 yrs

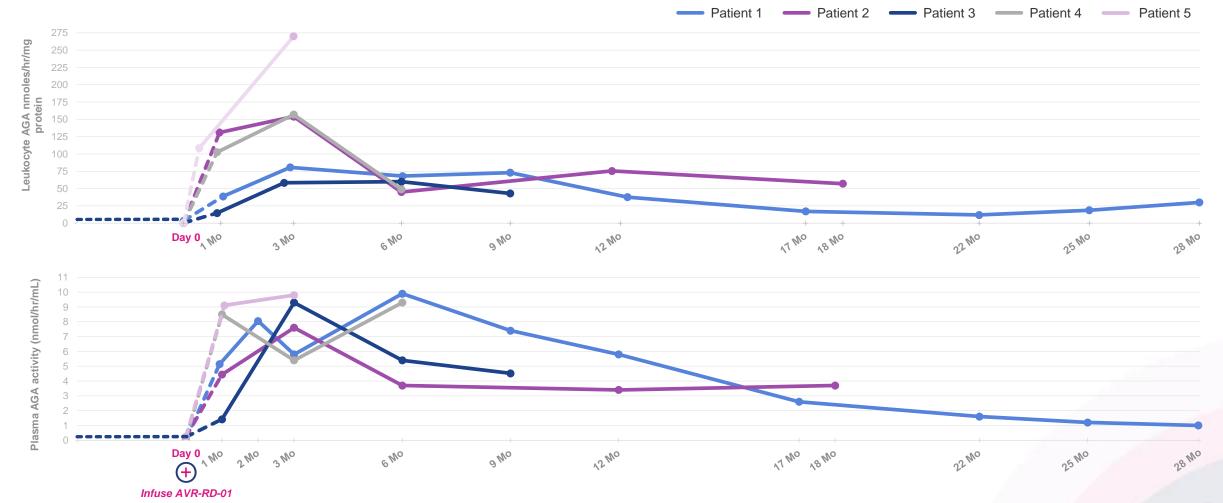
Reduced 41% from ERT baseline*



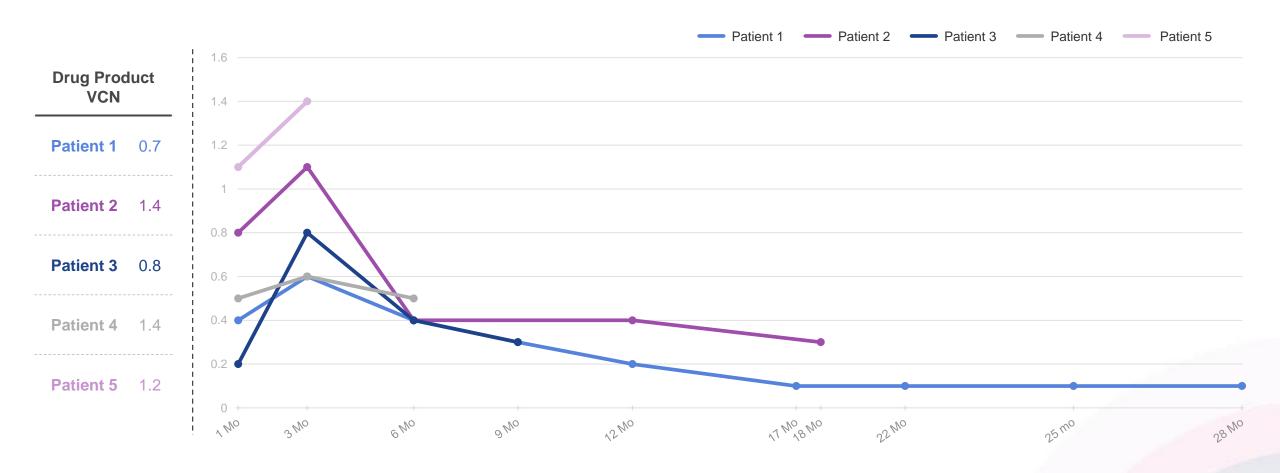
Phase 1: Plasma lyso-Gb3 consistently reduced by 33-41% vs. baseline* ERT at 6+ months post AVR-RD-01 treatment

*Baseline: The mean of the values reported prior to initiating mobilization **Percent reduction:** As measured from baseline to last assessment **Patient 4 discontinued ERT 7 months after gene therapy dose

Phase 1: Leukocyte and plasma enzyme activity sustained >2 years; VCN stable


Patient #1

Phase 1: Leukocyte and plasma enzyme activity levels trend consistently across all patients



Phase 1: Consistent VCN trend across all patients

Phase 1 5 patients dosed

No unexpected trends or safety events identified

No SAEs related to AVR-RD-01 drug product

AEs and SAEs reported

- AEs
 - Generally consistent with myeloablative conditioning, underlying disease or pre-existing conditions
- SAEs
 - Febrile neutropenia (resolved)
 - Thrombophlebitis (resolved)*

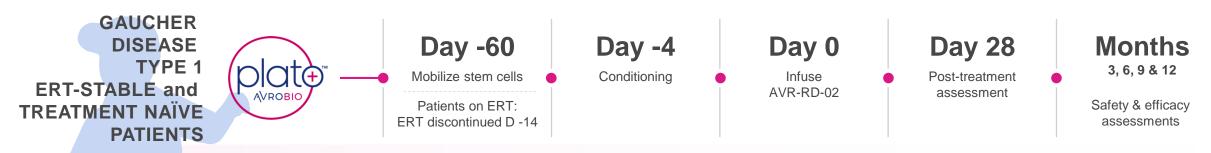
Anti-AGA antibodies

Mild titer rise in 1 patient

Note: Safety database cut as of May 24, 2019

8 patients dosed across 2 trials

longest follow-up >2 years


Emerging data support potential first-line use in Fabry disease

- 87% decrease in Gb3 in first kidney biopsy at 1 year in first Phase 2 patient
- Plasma lyso-Gb3 reduced by 30-40% vs. baseline ERT in four Phase 1 patients
- Kidney and cardiac function stable at 1 year in first Phase 2 patient
- Durability sustained >2 years for enzyme activity and VCN in first Phase 1 patient
- No unexpected trends or safety events identified 8 patients across 2 trials

GAU-201: Phase 1/2 study in Gaucher Type 1 patients

An adaptive, open-label, multinational phase 1/2 study of the safety and efficacy of ex vivo, lentiviral vector mediated gene therapy AVR-RD-02 for patients with Type 1 Gaucher disease

OBJECTIVES	PATIENTS	ASSESS
 Safety Engraftment Efficacy (functional endpoints and biomarkers) Evaluate need for ERT re-initiation 	 8-16 patients 16-35 year old males and females Two arms Treatment naïve Stable receiving ERT 	 Vector Copy Number (VCN) Chimerism GCase activity, including in CSF Efficacy Hematologic values End-organ volumes and BMD Biomarkers and QoL Safety

Significant unmet need in Gaucher Type 1

Standard of Care - ERT

- Despite ERT, patients experience significant life-limiting disease burden including musculoskeletal pain and fatigue
- Registry data suggest disease progression despite ERT

Incomplete Therapeutic Response is Common

- A clinically significant percentage of patients continue to exhibit bone pain, organomegaly and cytopenia after 10 years of ERT
- ~60% of patients fail to achieve at least 1 of 6 therapeutic goals after 4+ years of ERT
- ~25% of patients continue to suffer from physical limitations due to bone disease after 2 years of treatment

Disease Manifestations Persist After 10 Years of ERT

Persistence of:	Non-splenectomized Patients	Splenectomized Patients
Anemia	12.4%	8.8%
Thrombocytopenia	20.9%**	0.7%**
Splenomegaly	37.4%**	NA
Hepatomegaly	14.3%**	18.8%**
Bone Pain	42.9%	62.5%
Bone Crisis	7.4%	16.7%

^{*} Following 10 years of treatment ~26% of patients were receiving between 45-150 U/kg EOW (96% of these individuals were receiving doses between 45-90 U/kg EOW)

Note: Total of 757 patients in registry as of this study; source: Weinreb N et al, J Inherit Metab Dis, 2013

^{**} Higher persistence rates were observed when more severe manifestations were present at baseline

Investigator-sponsored* Phase 1/2 study in Cystinosis

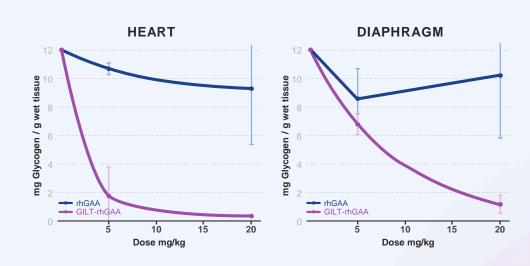
A Phase 1/2 study to determine the safety and efficacy of transplantation with autologous human CD34+ Hematopoietic Stem Cells (HSC) from Mobilized Peripheral Blood Stem Cells (PBSC) of patients with Cystinosis modified by ex vivo transduction using the pCCL-CTNS lentiviral vector

OBJECTIVES	PATIENTS	ASSESS
SafetyEfficacy	 6 patients adults and potentially adolescents 14–17 years old Using oral and ophthalmic cysteamine 	 Cystine levels in granulocytes Vector Copy Number (VCN) Chimerism Renal, respiratory and endocrine function, ophthalmologic findings, muscle strength, growth, bone density, neurologic and psychometric measures Safety

^{*} Sponsored by UCSD

Pompe preclinical program advancing

Integrated 3-part approach


THE CHALLENGE

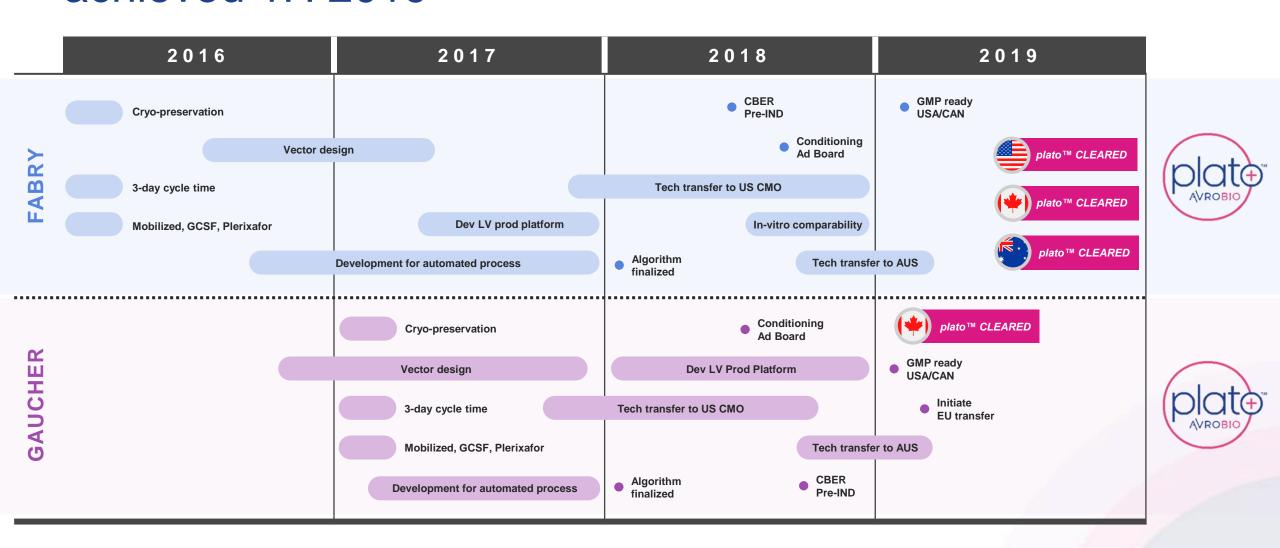
- Pompe requires 20x more ERT than Fabry or Gaucher
- Requires GAA activity restored to muscle and CNS

GILT-tagged Recombinant Human (rh)GAA impacts levels of stored glycogen compared to non GILT-tagged Recombinant Human (rh)GAA in a Pompe mouse model

AVROBIO's APPROACH

- 1. Potent transgene promoter
- GILT uptake tag
- 3. plato[™] for CNS impact

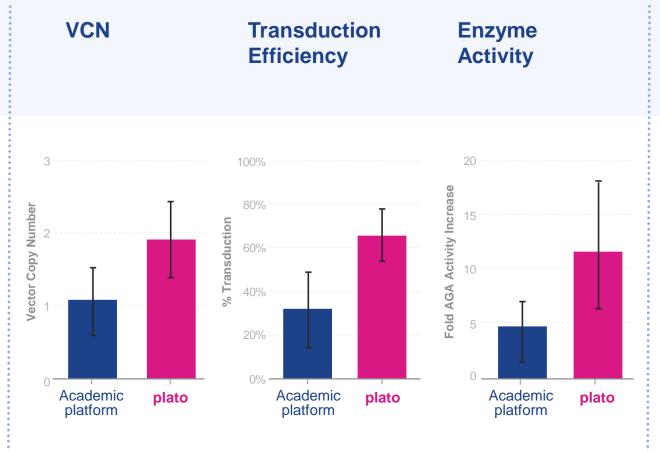
plato™


AVROBIO's foundation for worldwide commercialization

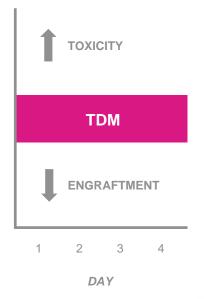
Beginning-to-end manufacturing platform

- Optimized for performance
- Redefines manufacturing best practices

Multiple plato[™] IND and CTA regulatory clearances achieved 1H 2019



plato[™] optimized for performance

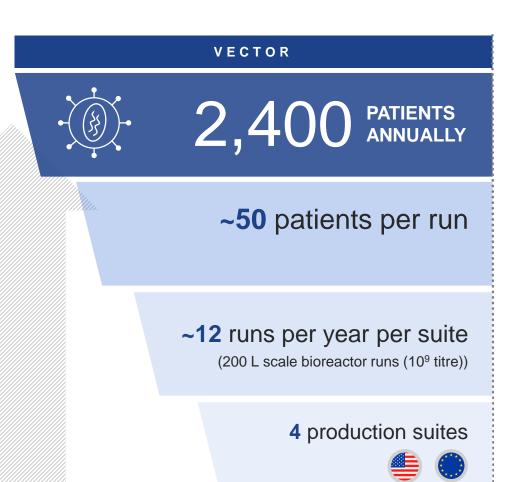


Proprietary Vector Toolbox

- OPTIMIZED VECTOR
- **PROMOTERS**
- OPTIMIZED
 TRANSCRIPTION
- OPTIMIZED TRANSLATION
- **TAGS**
- KOZAK
 SEQUENCE
- CODON OPTIMIZATION

Therapeutic Drug Monitored (TDM) Conditioning

Distribution



plato[™] platform designed to be scalable for commercial supply

DRUG PRODUCT 100 patients per unit per year 8 automated units per suite 3 global production suites

Multiple near-term milestones anticipated

FABRY

- Continued recruitment in FAB-201, with dosing of first Fabry patient under plato™ in 2019
- FAB-201 clinical sites to expand into USA in 2019

GAUCHER

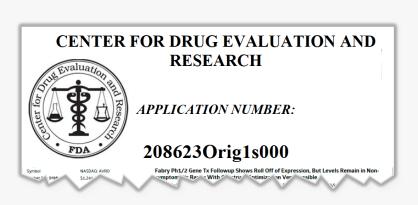
 Enroll first patient in GAU-201 in Q1 2020 with dosing in Q2 2020

CYSTINOSIS

 Dose first patient in investigator-sponsored trial in 2019

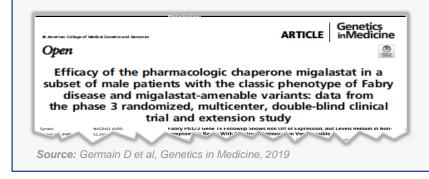
POMPE

 Pre-clinical IND-enabling study to be initiated in 2019


Appendix

Precedent for use of kidney biopsy data for FDA approval of drug candidate for Fabry disease

Migalastat approved on % reduction in GL-3 inclusions per KIC as compared to placebo


45 Amenable patients* (16 males / 29 females)

Group	Migalastat (BL -M6)	Placebo (BL –M6)
Males (N=16)	5/7 (71%) -1.10 (-1.94, -0.02)	4/9 (44%) -0.03 (-1.00, 1.69)
Patients with baseline GL-3 ≥ 0.3 (N=17; 9 males, 8 females)	7/9 (78%) -0.91 (-1.94, 0.19)	2/8 (25%) -0.02 (-1.00, 1.69)
Patients with baseline GL-3 < 0.3 (N=28; 7 males, 21 females)	6/16 (38%) -0.02 (-0.10, 0.26)	7/12 (58%) -0.05 (-0.16, 0.14)

Treatment Group	(min, max)		Month 6 Median (min, max)	Change from Baseline Median (min, max)
Average number of GL-3	3 inclusi	ions per KIC (N=13)		
Galafold	7	3.6 (0.2, 6.0)	2.6 (0.1, 6.0)	-0.7 (-1.7, 1.2)
Placebo 6		1.8 (0.1, 2.8)	2.0 (0.05, 4.3)	-0.04 (-0.5, 1.5)

7/9 males ≥ 50% reduction (at 6 months from baseline)

28% average reduction (at 6 months from baseline)

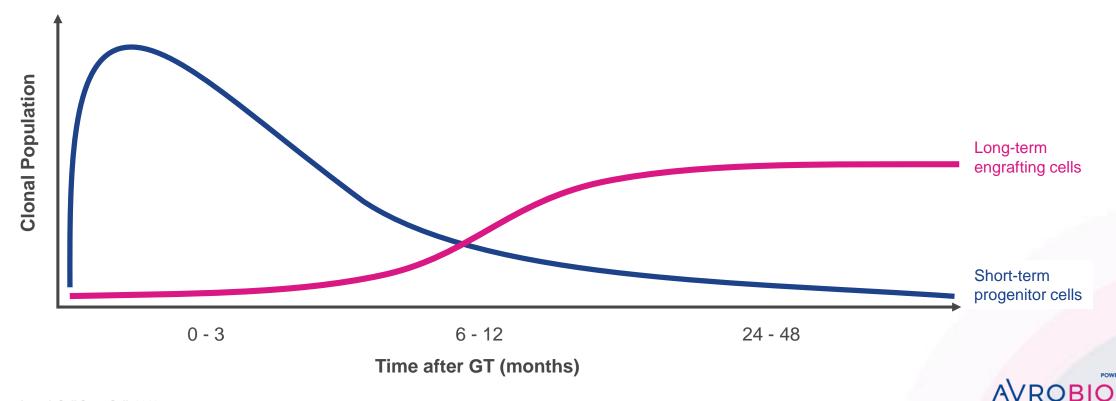
Classic Fabry patient level data

0-6 months randomized clinical trial and 6-12 months open label extension

	Male Patients with t								ne Classic Phenotype						
		Migalastat (Months 0-24)							Placebo (Months 0-6) → Migalastat (Months 6-24)						
	#1	#1 #2 #3 #4 #5 #6 #7						#8	#9	#10	#11	#12	#13	#14	
PTC GL-3 inclusions at BL	0.16	0.03	n/a	5.69	1.22	n/a	2.88	2.41	1.55	0.16	0.03	0.11	0.94	0.88	
Change in PTC GL-3 inclusions from BL to M6	-0.08	0.01	n/a	-1.77	-1.10	n/a	-1.25	1.21	-0.21	0.01	0.09	-0.07	1.94	-0.83	
Change in PTC GL-3 inclusions from BL/M6b to M12	-0.12	n/a	n/a	-1.92	n/a	n/a	-0.81	-0.94	-1.13	-0.09	-0.05	n/a	-2.28	0.06	

46% average reduction

(average of patients with 12 month data)


Classic Fabry disease (AGA activity <1%)

NOTE: For informational purposes; differences exist between trial designs and subject populations; AVROBIO has not conducted any head-to-head trials comparing migalastat to AVR-RD-01

Hematopoietic reconstitution occurs in two distinct phases

A few thousand long-term engrafting cells stably sustain levels of transgene product

First wave of short-term progenitor cells start to exhaust with progressive takeover by a smaller population of long-term engrafting cells

